

ECOMAPUÁ AMAZON REDD PROJECT

GHG EMISSION REDUCTIONS FROM AVOIDED UNPLANNED DEFORESTATION

Document Written By Sustainable Carbon – Projetos Ambientais Ltda.

Contact Information

Project Title	Ecomapuá Amazon REDD Project		
Version	02		
Date of Issue	22-February-2013		
Prepared By	Sustainable Carbon – Projetos Ambientais Ltda.		
Contact	Rua Doutor Bacelar, 368 Conjunto 131 Vila Clementino - São Paulo, SP		
	Postal Code: 04026-001 Brazil		
	T: +55 (11) 2649-0036 F: +55 (11) 2649-0042		
	david@sustainablecarbon.com		
	marcelo@sustainablecarbon.com		

Table of Contents

1		Details	
	1.1	Summary Description of the Project	3
	1.2	Sectoral Scope and Project Type	4
	1.3	Project Proponent	4
	1.4	Other Entities Involved in the Project	5
	1.5	Project Start Date	5
	1.6	Project Crediting Period	5
	1.7	Project Crediting Period Project Scale and Estimated GHG Emission Reductions or Removals	5
	1.8	Description of the Project Activity	6
		Project Location	
	1.10	Conditions Prior to Project Initiation	21
		Compliance with Laws, Statutes and Other Regulatory Frameworks	
		Ownership and Other Programs	
	1.12.1	Proof of Title	
	1.12.2	Emissions Trading Programs and Other Binding Limits	
	1.12.3	Participation under Other GHG Programs	30
	1.12.4	Other Forms of Environmental Credit	
	1.12.5	Projects Rejected by Other GHG Programs	
		Additional Information Relevant to the Project	
2		ation of Methodology	
2		Title and Reference of Methodology	
		Applicability of Methodology	
		Project Boundary	
		Baseline Scenario	
		Additionality	
		Methodology Deviations	
3	Ouanti	fication of GHG Emission Reductions and Removals	72
0		Baseline Emissions	
		Project Emissions	
		Leakage	
	3.4	Summary of GHG Emission Reductions and Removals	90
4		ring	
		Data and Parameters Available at Validation	
		Data and Parameters Monitored	
		Description of the Monitoring Plan	
5		nmental Impact	
6		older Comments	
		PROJECT AREA CONTOUR COORDINATES1	
Aſ		LAND REGISTRY DOCUMENTS	19
Aſ		ARTICLES OF INCORPORATION OF ECOMAPUÁ CONSERVAÇÃO Ltda1	32
		DEFINITION OF PROJECT AREA	
A٢	NNEX V -	DEFINITION OF CARBON STOCKS1	37

1 **PROJECT DETAILS**

1.1 Summary Description of the Project

Brazil has more than 470 million hectares of forest, covering 60.14% of its entire territory (FAO – FRA, 2010¹), putting it in second place for nations with most forest area worldwide. Brazil has at times also been the country with the highest levels of forest loss in the world, for example 3,090,000ha was deforested from 2000 to 2005 (FAO – FRA, 2010). The expansion of the agriculture frontier due to cattle ranching, timber collection, and colonization by subsistence agriculturalists has contributed to this historically high deforestation rate, which is concentrated in the northern portion of the country, where the Amazon Rainforest lies.

The Ecomapuá Amazon REDD Project is located on Marajó Island, Pará State, in the Eastern Amazon region of Brazil. The island lies at the mouth of the Amazon River, which has been called the rainforest's "super highway", being the principal means of transportation as well as a strong driver of deforestation. Marajó is Brazil's richest region in terms of waterways², and it has a long history of colonization especially by small-scale subsistence farmers, beginning early in the history of Amazon exploration during the rubber-tapping era. The Marajó *várzea* is a critically valuable ecosystem for many species, but especially noted for its avifauna³, adding to the importance of the present project, as described in section 1.9 and 1.10 of the present VCS-PD.

The primary objective of the Ecomapuá Amazon REDD AUD Project is to avoid the unplanned deforestation (AUD) of an 86,269.84ha area within a private property on Marajó island, totalling 98,362ha, owned by Ecomapuá Conservação Ltda. (hereafter, Ecomapuá Ltda. or "the company"). The company is a private Brazilian sustainable development firm engaged in renewable energy and carbon finance projects, with the mission of conserving the environment and improving living standards of isolated communities on the island. Beyond the ecological and carbon benefits of the project, a proportion of the carbon credits generated will be dedicated to improving social and environmental conditions for the project area residents, specifically contributing to environmental education implemented in the *Fazenda Bom Jesus* and *Vila Amélia* Ecomapuá properties.

The present REDD project will avoid a predicted 4,253.14ha of deforestation, equating to around 2,745,350 tCO_2e in emissions reductions across the project crediting period (01/01/2003 – 31/12/2032), not including reductions for the project's efficiency, non-permanence risk buffer and displacement leakage factor. Subtracting the aforementioned parameters, the emissions avoided by the Ecomapuá Amazon REDD AUD Project are expected to be 1,432,278 tCO_2e over the 30 year project lifetime. The dynamic of deforestation within the project's reference region involves overlapping agents, which cannot be separated in terms of deforestation location. Specifically, the agents are: timber harvesters, acting both legally and illegally; subsistence farming relying on slash and burn practices for cultivation⁴; and extraction of palm heart, which supplements the income and subsistence from latter activity.

Revenue from the sale of VCUs is essential for the project activity to compete with the profitable alternative landuse scenarios, namely timber production, and palm-heart extraction.

¹ Global Forest Resource Assessment: Main Report, available at: <u>http://www.fao.org/docrep/013/i1757e/i1757e.pdf</u>; and Country Report for Brazil, available at: <u>http://www.fao.org/forestry/20288-0f6ee8584eea8bff0d20ad5cebcb071cf.pdf</u>

² Grupo Executivo do Estado do Pará para o Plano Marajó (GEPLAM) (2007), "Plano De Desenvolvimento Territorial Sustentável Do Arquipélago Do Marajó."

³ Antonio A. F. Rodrigues, (June 2007) "Priority Areas for Conservation of Migratory and Resident Waterbirds on the Coast of Brazilian Amazonia". *Revista Brasileira de Ornitologia 15 (2) 209-218.*

⁴ Fundação de Amparo e Desenvolvimento da Pesquisa (FADESP) (2002), "Comunidades Agroextrativistas do Rio Mapuá – Breves/PA, Diagnóstico Socio-Econômico".

1.2 Sectoral Scope and Project Type

14. Agriculture, Forestry, Land Use

Reducing Emissions from Deforestation and Degradation (REDD) through Avoided Unplanned Deforestation. This is not a grouped project.

1.3 Project Proponent

Project Developer and Project Proponent

Sustainable Carbon – Projetos Ambientais Ltda.: Project developer, Project participant and Project conceiver.

As the authorized project contact, Sustainable Carbon was given the responsibility of developing the present Project Document.

This Project Description Document was completed on 22/02/2013 by David Swallow, Marcelo Hector Sabbagh Haddad and Thiago de Avila Othero, from Sustainable Carbon – Projetos Ambientais Ltda.

Other information on the project's developer's contact:

Address:

R. Doutor Bacelar, 368 - Conj. 131 - Vila Clementino

Postal Code: 04026-001

São Paulo - SP, Brazil

Phone number: +55 11 2649 0036

Web site: http://www.sustainablecarbon.com

Emails:

Project Coordinators marcelo@sustainablecarbon.com; thiago.othero@sustainablecarbon.com

Forest Project Analyst: david@sustainablecarbon.com

Project Proponent Ecomapuá Conservação Ltda. Contact: Lap Tak Chan - Managing Partner Address: Avenida Gentil Bittencourt, n° 1390, Loja B-4, Bairro Nazaré, Postal Code: 66040-000, Belém, Pará, Brazil Email: lap@ecomapuá.com.br

1.4 Other Entities Involved in the Project

Agência Verde Rua Cardeal ArcoVerde, 1749, bloco II, Conjunto 36, São Paulo, SP Postal Code: 05508-000 Tel: +55 11 2597 0008 Email: <u>rafael@agenciaverde.com.br</u>; <u>maffi@agenciaverde.com.br</u>

1.5 Project Start Date

The project start date is 01/09/2002 because an initial diagnostic study of the area, commissioned by Ecomapuá Ltda., was published on this date, analyzing the risk of deforestation over the next 30 years⁶. The deforestation rate identified in the aforementioned study was 0.685% per year – an estimated baseline which justified the probable viability of a future REDD project. To clarify, this deforestation rate is not the one utilized in the present REDD project, merely a preliminary estimate.

Ecomapuá Ltda. was created on 19/07/2001, with the following goal described in their Social Contract⁷: "development of sustainable development projects, clean development mechanisms, carbon sequestration". Therefore, the diagnostic study mentioned above was the first action of the company in terms of initiating the present REDD project, and is thus the designated project start date.

1.6 Project Crediting Period

The project has a crediting period of 30 years, from 01/01/2003 until 31/12/2032.

1.7 Project Scale and Estimated GHG Emission Reductions or Removals

Project	х	
Mega-project		

Table 1 – Indication of "project" or "mega-project" scale

⁷ São Paulo, 19.07.01 - "Instrumento particular de Alteração de Contrato Social, Santana Madeiras Ltda.".

⁶ P. G. Martorano (September 2002), "Caracterização da vegetação e uso do solo das terras pertencentes à empresa Ecomapuá Conservação Ltda No Município de Breves, Pará"

Years	Estimated GHG emission reductions (tCO ₂ e)
2003	62,338
2004	57,017
2005	42,743
2006	72,363
2007	70,306
2008	74,014
2009	71,967
2010	71,954
2011	57,864
2012	93,784
2013	80,542
2014	65,796
2015	7,392
2016	83,986
2017	60,999
2018	30,024
2019	245,055
2020	13,602
2021	126,862
2022	55,929
2023	72,423
2024	90,405
2025	112,758
2026	10,162
2027	122,071
2028	67,736
2029	51,245
2030	77,690
2031	112,625
2032	8,487
Total estimated ERs	2,170,138
Total number of crediting years	30
Average annual ERs	72,338

Table 2 – Estimated total and average annual gross ERs

1.8 Description of the Project Activity

The principal objective of the present REDD project is the conservation of 86,269.84ha of forest area within the five Ecomapuá properties described in section 1.9 of the present VCS PD. This will be achieved through

avoidance of unplanned deforestation, the ex-ante estimate for avoided deforestation over the 30 year project lifetime being 4,253.14ha. The avoided emissions due to the Ecomapuá Amazon REDD AUD Project are expected to be 1,432,278 tCO2e across the project crediting period (01/01/2003 - 31/12/2032), including buffer (RF), leakage (DLF) and project efficiency (EI) reductions.

The Ecomapuá Amazon REDD project committed to conservation of its properties as of 2002, despite a consistently negative financial balance. For this reason, and because of competition pressures described in section 2.5, additionality, the revenue from the present REDD project is essential to the continued conservation of this native rainforest area. Conservation activities involve the banning of logging in the project area as of the project start date, which invoked a strong reaction from the community upon its implementation⁸. The supervision of logging is carried out by three supervisors from within the project area communities, who deliver periodic reports to the project owner.

To consolidate this commitment to conservation, Ecomapuá Ltda. will invest in environmental education that will benefit the 38 families living in the Bom Jesus and Vila Amélia properties, with plans to expand this program to more families. This activity forms part of the IAS/UFRA Fome Zero project⁹, which ceased to function after 2006 and will be able to resume thanks to carbon credits from the present REDD project.

FSC-certified, low-impact logging is being considered by the management of Ecomapuá Conservação as a future income source, however this activity would be strictly on the condition of FSC certification being obtained. In this case, wood harvesting activities will be included in the monitoring period concerned.

Besides forest conservation, the present project aims to improve and quantify its social and environmental benefits through application of the SOCIALCARBON® Methodology, which will be carried out during the first monitoring period. This methodology is an innovative concept developed by the Ecológica Institute to measure the contribution of carbon projects to sustainability. The SOCIALCARBON® Methodology is based on six main indicators: Biodiversity; Natural; Financial; Human; Social and Carbon Resources, and aims to deliver highintegrity benefits in each.

1.9 **Project Location**

The Ecomapuá Amazon REDD Project (hereafter "the project" or "the present project") is situated on Marajó Island (Ilha de Marajó) in Pará state in the far north-east of Brazil, which is the lower Amazon Basin. The island forms the mouth of the Amazon River, the Amazon and Tocantins rivers being the west and the eastern boundaries of Marajó Island, respectively. Marajó is considered the largest river/sea island in the world, being almost the size of Switzerland and spanning 48,000 km²¹⁰.

There are 16 municipalities in the Marajó archipelago, divided into three micro-regions: Portel, Furos de Breves and Ararí. The areas belonging to Ecomapuá Ltda. are located in the Furos de Breves micro-region, in the western part of Marajó Island, and fall into three municipalities: Breves, Curralinho and São Sebastião da Boa Vista. In terms of transport, the project is only reachable by a 12-hour boat journey or a 45 minute flight from the city of Belem.

The project area comprehensively belongs to Ecomapuá Ltda., and is split into five properties (Portuguese: Fazendas): Bom Jesus, Brasileiro, Lago do Jacaré, São Domingos and Vila Amélia (Figure 2). In accordance with V-C-S requirements, stipulated in Approved VCS Methodology VM0015, version 1.1 (hereafter "the

⁸ Fundação de Amparo e Desenvolvimento da Pesquisa (FADESP) (2002), "Comunidades Agroextrativistas do Rio Mapuá -Breves/Pa: Diagnóstico Socio-Econômico. Convênio UFPA/FADESP/NOVA AMAFRUTAS, 2002."

⁹ Universidade Federal Rural da Amazônia (UFRA), Instituto Amazônia Sustentável (IAS), Petrobrás (2007), "Projeto piloto de geração de renda e alimento através de produção agrícola familiar e manejo florestal sustentável em comunidades ribeirinhas carentes no rio Mapuá – Relatório Final" ¹⁰ WWF (2008), "The Encyclopedia of Earth": <u>http://www.eoearth.org/article/Maraj%C3%B3</u>

methodology"), they are areas which 'include only "forest"¹¹ for a minimum of ten years prior to the project start date'. As shown in Figure 1 below, the size of the areas that were considered as "non-forest" within the project area was 12,151.63ha. This was excluded from the initial area of 98,421.47ha, resulting in 86,269.84ha, which was then defined as project area.

The Ecomapuá properties are located on either side of the Mapuá River, and span three municipalities: the four smaller properties are located in Breves municipality, while the largest property, "Lago do Jacaré", extends into the municipalities of Curralinho and São Sebastião da Boa Vista (see Table 3 below). The full contour coordinates of the project area are found in Annex I. The northern boundary of the property is constituted by the delta of the Arama and Mapuá rivers, and to the east by the municipality of São Sebastião da Boa Vista, to the west by the delta of the Mapua-Mirim and Furo dos Macacos, and to the South by the municipality of Curralinho.

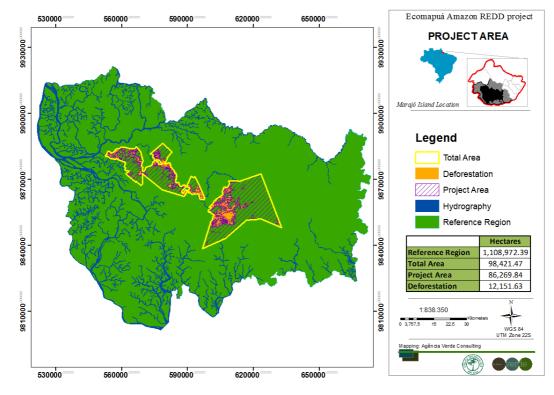


Figure 1 – REDD area, showing in orange the areas to be excluded, not being defined as forest 10 years prior to PSD

¹¹ The applied definition of forest is from the FAO: "Land with tree crown cover (or equivalent stocking level) of more than 10 percent and area of more than 0.5 hectares (ha). The trees should be able to reach a minimum height of 5 meters (m) at maturity *in situ.*" Available at: <u>http://www.fao.org/docrep/006/ad665e/ad665e06.htm</u>

PROJECT DESCRIPTION: VCS Version 3

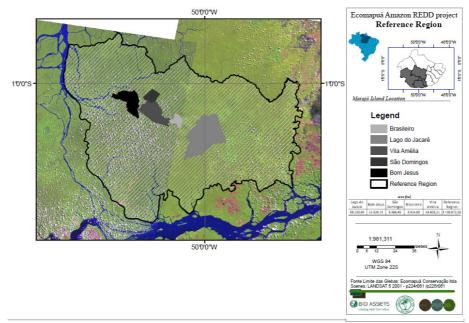


Figure 2 – Ecomapuá REDD project's five properties and reference region

MUNICIPALITY	PROPERTY	FOREST HECTARES/ MUNICIPALITY	PERCENTAGE PROJECT AREA / TOTAL AREA
Breves, PA	Bom Jesus	12,378.67	14%
Breves, PA	Brasileiro	3,018.69	3%
Breves,PA		52,459.60	61%
Curralinho, PA	Lago do Jacaré		
São Sebastião da Boa Vista, PA		<u> </u>	01/0
Breves, PA	Sao Domingos	4,184.22	5%
Breves, PA	Vila Amelia	14,228.65	16%
TOTAL		86,269.83	100%

Table 3 – Ecomapuá REDD Project areas per municipalities

Definition of the property boundaries

The project area borders used in the Ecomapuá Amazon REDD Project were extracted from technical appraisals (Portuguese: laudos) registered at an official notary and at INCRA¹². Vectorization – which is the process of converting the appraisal documents into digital shapefiles and polygons, being formats compatible with GIS software – was conducted using ArcGIS and ArcCatalog software¹³.

¹²Instituto Nacional de Colonização e Reforma Agrária (INCRA): http://www.incra.gov.br/

¹³ Full process described Annex IV

The Reference Region

The reference region (RR) (see Figure 1) is an analytical domain through which information on rates, agents, drivers and underlying causes (or "distal drivers"¹⁴) of land-use and land-cover (LU/LC) change are obtained, and subsequently used for future projection and monitoring.

The RR sums to 1,108,972.39 ha and is distributed among 7 municipalities, although two of these are insignificant, summing to 0.004% of the total area (see Table 4 below)

The RR was defined in accordance with two criteria:

- The methodology recommendation that projects over 100,000ha in size should have RRs 5 7 times bigger than the project area. The Ecomapuá REDD project is somewhat below the latter figure, being some 86,269.84ha of project area. For this reason, an approximate factor of ten was decided upon to calculate the RR. This was appropriate as the key region of western Ilha de Marajó is in the right size range for the resulting RR size: 1,108,972.39 ha.
- Adjustment criteria were applied to the RR in order for it to more accurately represent the land-use dynamics. Specifically, this was based on the waterways which are the principal means of human transportation in the region^{15,16}. As such, from the areas surrounding the project area, the RR was expanded to meet the nearest main waterways.

MUNICIPALITY	HECTARES/ MUNICIPALITY	% RR / TOTAL RR
Afuá	27.30	0.002%
Anajás	216,265.55	19.50%
Breves	523,254.01	47.18%
Curralinho	214,611.87	19.35%
Muanã	33,562.87	3.03%
Ponta de Pedras	12.67	0.001%
São Sebastião da Boa Vista	121,238.13	10.93%
TOTAL RR AREA:	1,108,972.39	100.00%

Table 4 – Reference Region areas and percentages

Definition of the Leakage Belt

Considering baseline activity, subsequent sections of the present PD have established that the deforestation in the region involves three spatially overlapping activities: firstly, extraction of commercially valuable tree species by resident families for sale to timber companies. This is accompanied by palm-heart extraction, which is both for commercial ends and for consumption or trade in kind by the harvesters themselves. The final step is the slash-and-burn deforestation of the area above for subsistence agriculture.

The implementation of the present project in 2002 led to the banning of timber harvesting in the areas belonging to Ecomapuá Ltda and, since then, there have been many initiatives to promote sustainable forest management

¹⁴ COP 17 (2011), "GOFC – GOLD Sourcebook COP17, Version 1" (p.2 – 109)

¹⁵ Amaral, D.D., Vieira, I.C.G., Salomão, R.P., Almeida, S.S., Silva, J.B.F., Costa Neto, S.V., Santos, J.U.M., Carreira, L.M.M. & Bastos, M.N.C. (2007), 'Campos e Florestas das bacias dos rios Atuá e Anajás. Ilha do Marajó, Pará. Museu Emílio Goeldi. Coleção Adolpho Ducke. Belém'.

¹⁶ Fundação de Amparo e Desenvolvimento da Pesquisa (FADESP) (2002), "Comunidades Agroextrativistas do Rio Mapuá – Breves/PA, Diagnóstico Socio-Econômico".

VERIFIED CARB STANDARD

in the project areas. However, according to several studies^{17,18,19}, subsistence agriculture activities continue to be practiced by the Mapuá River communities, as they were before the initiation of the project, being that they were not regulated by the project proponent.

Given that subsistence agriculture was not prohibited by the project proponent, deforestation caused by this agent outside the project area is not attributable to project leakage. Thus, it is inferred that timber harvesting is the most probable activity to have leaked outside the project area, due to its prohibition within the latter since the project start date. This inference is reinforced by FADESP (2002), who collected interviews in which residents stated that they could no longer harvest timber within the project area, and also from the protests and complaints observed in certain communities due to the prohibition, which had been their primary source of income. This being the case, the leakage belt corresponds to the area most likely to be used for timber extraction after its prohibition within the project area.

In accordance with section 1.1.3 of the methodology, the leakage belt was defined by means of opportunity cost analysis. The latter is applicable when at least 80% of deforested area in the reference region during the historical reference period occurred where deforestation was profitable for at least one product. Given that the principal causes of deforestation in the reference region generally overlap, due to the land-use dynamic explained in section 2.4 of the present VCS-PD, it was concluded that deforestation was lucrative for at least one product, namely timber.

The vast majority of the timber extracted in the Mapuá River region, in particular after the closing of Santana Madeireira in 2001, the biggest timber company in the region, is processed in small sawmills. As described in the FADESP²⁰ and IFT ²¹ reports, and the Masters' Degree Thesis by Herrera²², along the banks of the Mapuá River there are numerous sawmills, the majority of which are of small size. There are two possibilities for the economic dynamic of the timber harvesting: either the sawmills have their own team, who conduct the harvesting; or the sawmill buys the timber harvested by the river-dwellers and splits the profits with them. The latter option is the most common in the Mapuá River region, according to an interview conducted with an employee of the ICMBio²³ - the government organ for biodiversity conservation, active in the region. These sawmills generally operate for 6 months of the year, during the flooding season, when transport is facilitated by the swollen rivers.

As specified by the methodology, the analysis of the products' profitability was conducted according to the following formula:

$$PPx_{l} = S\$x - PCx_{i} - \sum_{\nu=1}^{\nu} (TD\nu * TC\nu)$$

Where,

PPxI: Potential profitability of product Px at location I (pixel or polygon);

\$/t S\$x: Selling price of product Px; \$/t

PCxi: Average in situ production costs for one ton of product Px in stratum i;

¹⁷ Fundação de Amparo e Desenvolvimento da Pesquisa (FADESP) (2002), "Comunidades Agroextrativistas do Rio Mapuá -Breves/Pa: Diagnóstico Socio-Econômico. Convênio UFPA/FADESP/NOVA AMAFRUTAS, 2002." ¹⁸ Instituto Florestal Tropical (IFT) (2012), "Visita técnica de prospecção para avaliação do potencial do manejo florestal na

Reserva Extrativista Mapuá, Breves, Pará. Relatório Final." ¹⁹ Herrera, J. A. (2003), "Dinâmica e desenvolvimento da agricultura familiar: o caso de Vila Amélia – Breves, PA.

Dissertação de mestrado. Universidade Federal do Pará."

²⁰ Fundação de Amparo e Desenvolvimento da Pesquisa (FADESP) (2002), 'Comunidades Agroextrativistas do Rio Mapuá -Breves/PA, Diagnóstico Socio-Econômico".

²¹ Instituto Florestal Tropical (IFT) (2012), "Visita técnica de prospecção para avaliação do potencial do manejo florestal na Reserva Extrativista Mapuá, Breves, Pará. Relatório Final".

Herrera, J. A. (2003), "Dinâmica e desenvolvimento da agricultura familiar: o caso de Vila Amélia - Breves, PA." Dissertação de mestrado. Universidade Federal do Pará. ²³ Interview: D. Meneses (23.11.12).

\$/t T Cv: Average transport cost per kilometer for one ton of product Px on land, river or road of type v; \$/t/km

TDv: Transport distance on land, river or road of type v; km v 1, 2, 3 ...V, type of surface to on which transport occurs; dimensionless

The formula above is used to calculate the potential profitability of a given product in a given location and the borders of the leakage belt correspond to the area where the profitability of at least one product is equal or above 1. The leakage belt is here established on the basis of analyses and calculations from a study conducted within the reference region²⁴ on the costs and profits from harvesting and processing of timber. This study was chosen because it provides complete and thorough field information.

The table below shows the average costs of production and income from small sawmills in the Amazon estuary and lower Amazon River area over the period of a year:

Cost of production (US\$)		
Depreciation	118	
Maintenance	787	
Fuel	1,139	
Labour	5,058	
Purchase of logs	5,883	
Transport of logs	1,721	
Cost of capital	89	
Total cost of production	14,795	
Value of production	17,550	
Liquid income	2,755	
Profit margin	17%	

Table 5 – Annual average costs of production and income from small sawmills in the project reference area

The two common scenarios of production in the reference region of the project are:

- 1) The sawmills can purchase timber from the individuals carrying out the harvesting;
- 2) The sawmills split the profits with the harvesters instead of paying them directly for the services.

On the basis of the aforementioned study of the Amazon estuary, the following observations and calculations were made, described below, treating each scenario in turn.

Concerning scenario 1), the calculations are as follows:

	Item	Variables	Calculation
a)	Total annual transport costs	1,721	
b)	Total annual fuel costs	89	
c)	Fuel cost per liter (US\$/I)	0.23	
d)	Total annual fuel expenditure boat transport (I/h)	3.4	

²⁴ BARROS, A. C.; UHL, C. (1996), "Padrões, problemas e potencial da extração madeireira ao Longo do Rio Amazonas e do seu Estuário". In BARROS, A. C.; VERÍSSIMO, A. (Eds) A expansão Madeireira na Amazônia: impactos e perspectivas para o desenvolvimento sustentável do Pará. Belém: Imazon.

e)	Average boat transport journey time (h)	2.75 h	11 km / 4 km.h
f)	Annual Quantity of fuel used (I)	386.96	US\$ 89 / 0.23 US\$.I ⁻¹
g)	Annual time taken (h)	113.81	386.96 l / 3.4 l.h ⁻¹
h)	Annual journeys undertaken	41.38	113.81 h / 2.75 h
i)	Annual distance travelled (km)	455.24	41.38 journeys x 11 km

Table 6 – Annual average values per sawmill concerning scenario 1

The calculation of distance within which profitability≥1 was conducted on the basis of liquid income of the small sawmills. As defined by VCS methodology VM0015, the calculation was made as follows:

Liquid income (US\$2,755) - Costs of transport (US\$2,754) = 1

Kilometres travelled = Cost of transport where profitability \geq 1 (US\$2,754) x 455.24km average distance/ 1,721US\$ average transport costs = 728.5km

Scenario 1): Annual average values per sawmill

	Item	Variables	Calculation
j)	Distance travelled where profitability ≥ 1	728.5 km	Cost of transport where profitability ≥1 (US\$ 2,754) x average distance (455.24 km) / average transport costs (US\$1,721)
k)	Difference between distance travelled where profitability ≥1 and distance travelled when transport costs are industry average US\$ 1,721 (km)	273.26 km	728.5 km - 455.24km
I)	Equivalent of calculation b) above in terms of journeys	24.84	
m)	Extra distance per journey required to attain profitability ≥1 (km)	6.60	273.26 km / 41.38 journeys
n)	Total distance required to attain profitability ≥1 (km)	17.60	Average journey time (11 km) + calculation m).

Table 7 – Calculations for distance corresponding to profitability \geq 1 in leakage scenario 1)

In scenario 1, 17.60km (item n. in Table 7), is the calculated maximum distance that timber collectors would travel to collect wood and remain profitable.

Secondly, scenario 2: the sawmills split the profits with the harvesters instead of paying them directly for the services; the calculations are as follows:

Scenario 2): annual average values per sawmill

	Item	Costs/ Variables	Calculation
0)	Costs for raw material (US\$)	8,912	Total cost of production (US\$ 14,795) - cost of timber (US\$ 5,883). No cost of timber because instead of payment, profits are divided with harvester.

p)	Liquid income (US\$)	8,638	Value of production (US\$ 17,550) - calculation o)
q)	Profit for sawmill/ harvester (US\$)	4,319	Item p)/ 2
r)	Total cost (US\$)	13,231	Total cost = item o) + item q)
s)	Liquid profit (US\$)	4,319	Total value of production (US\$ 17,550) - item r)
t)	Cost of transport where profitability ≥1 (US\$)	4,318	item s) - t) = 1
u)	Distance travelled given cost in item t)	1,142.20	item t) x item i) / item a)
v)	Difference between item u) and average distance travelled (km)	686.96	item u) - item i)
w)	Number of journeys extra journeys required corresponding to item t)	62.45	Item v) / average boat journey (11 km)
x)	Number of km / journey necessary to achieve extra distance (item v)	16.60	Item v) / average distance (11 km)
у)	Average total distance from sawmills per journey (km)	27.60	item x) + average distance (11 km)

Table 8 - Calculations for distance corresponding to profitability ≥1 in leakage scenario 2)

In scenario 2, 27.60km (item y in table 8), is the calculated maximum distance that timber collectors would travel to collect wood and remain profitable. The two distances calculated in item n) and item y) therefore correspond to the maximum distance from sawmills that harvesters would travel to collect primary materials.

In accordance with various sources^{25,26,27}, both the sawmills, in their vast majority, and the communities in the project reference areas are located on the banks of rivers. The aforementioned IFT (2012) source notes there are at least 17 sawmills along the Mapuá River, which is also the river which passes all the communities of the present project. It was therefore determined that the leakage belt of the present project will follow the rivers. As to the radius of the reference area, it was determined that 27.60km (item y) should be used, as use of the larger of the two calculations (items n) and y)) is both conservative and it corresponds to the more common of the land use dynamics, scenario 2, above.

The leakage belt of the Ecomapuá Amazon REDD Project (Figure 3 below) was defined by quantitative parameters (Table 9) of feasible distance in terms of: (1) a sawmill could have access to timber harvested by local populations and; (2) the maximum distance travelled by the population to extract timber was realistic taking into account the project area.

PARAMETER	DISTANCE	CRITERIA
1	27km	Using ArcGIS, A 27km radius was considered starting from the Mapuá around the entire project area. This was because it was assumed that a consequence of the Project's existence was displacement of activity, utilizing the rivers for transportation, accessible within 27km of the mouth of the Mapuá river.
2	2km	A buffer of 2km was created in ArcGIS, surround the boundaries of all the rivers affected by parameter 1, which was an arbitrary value defined by analysis of satellite imagery as being the average non-forest area surround rivers.

Table 9 – Adjustment criteria used in defining the leakage belt

 ²⁵ SOUZA ,A.L. *et al.* (2002), "Comunidades Agroextrativistas do Rio Mapuá – Breves/PA: Diagnóstico Socio-Econômico. Convênio UFPA/FADESP/NOVA AMAFRUTAS, 2002".
 ²⁶ HERRERA, J. A. (2003), "Dinâmica e desenvolvimento da agricultura familiar: o caso de Vila Amélia – Breves, PA.

²⁶ HERRERA, J. A. (2003), "Dinâmica e desenvolvimento da agricultura familiar: o caso de Vila Amélia – Breves, PA. Dissertação de mestrado. Universidade Federal do Pará".

²⁷ INSTITUTO FLORESTAL TROPICAL (IFT) (2012), "Visita técnica de prospecção para avaliação do potencial do manejo florestal na Reserva Extrativista Mapuá, Breves, Pará. Relatório Final."

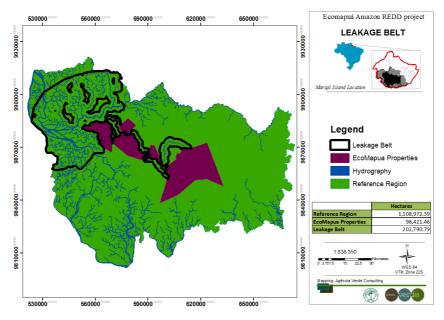
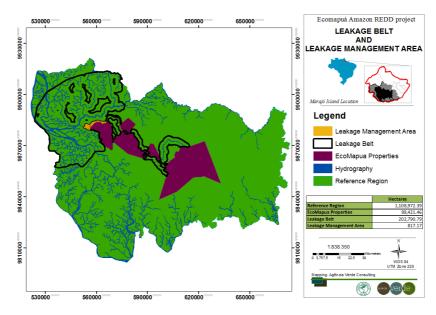


Figure 3 – Leakage belt of the Ecomapuá Amazon REDD project

Leakage Management Area

The leakage management area is designed to implement the activities which reduce the risk of leakage in the project scenario. These activities must include the agents of deforestation and involve seeking new sources of income which contribute to forest conservation. Leakage management could involve agricultural, agro-forestry, reforestation, education or other activities.


The Ecomapuá Amazon REDD Project's leakage management area is located within the *Fazenda Bom Jesus*, specifically the areas which were deforested prior to project start date (Figure 4). This area was chosen due to the presence of activities including: environmental education, reforestation and alternative livelihood projects involving generation of income, electricity and production of food. These activities involve the residents of both the Bom Jesus and Vila Amélia properties, being 38 families and 38% of the population in the project area (see table 11, section 1.9).

The following activities take place in the leakage management area:

- A technical school and tree nursery to benefit all members of the two communities, currently and continuously active in the leakage management area²⁸;
- The *Fome Zero* project by UFRA University in conjunction with IAS, the NGO active in the project area, which aims to create a viable and replicable capacity-building model for family agriculture in the communities²⁹. This aim will be achieved through improvement of capacity and techniques in sustainable forest use, in order to create permanent and temporary jobs for the local community. This project last ran in 2006 and will be able to resume activities thanks to income from sales of carbon credits from the present project.

²⁸ Interview with project supervisor, Mr Aloísio (09.01.13)

²⁹ Universidade Federal Rural da Amazônia (UFRA), Instituto Amazônia Sustentável (IAS), Petrobrás (2007), "Projeto piloto de geração de renda e alimento através de produção agrícola familiar e manejo florestal sustentável em comunidades ribeirinhas carentes no rio Mapuá – Relatório Final".

General characteristics of the project area and reference region

Climate

Figure 5 - Marajó Island divided into climate type³⁰

The Furos de Breves region is classified as Tropical rainforest climate type - category Af - in the Köppen climate classification³¹. This means that it has no dry season, and the average annual rainfall is high, averaging 2.200mm year⁻¹, due to the convergence of trade winds and sea-breezes³². The relative humidity in the region is always above 80%³³.

These conditions combined make excellent conditions for biomass to thrive, leading to the high levels of biomass described in section 1.10. The Af climate type is defined as follows:

³⁰ Lima, A.M.; Oliveira, L.L.; Fontinhas, R.L.; Lima R.J.S. (SECTAM/NHM) (2004),"The Marajó Island: Historical Revision, Hydroclimatology. Hydrographical Basins and Management Proposals."

KÖPPEN, W.; GEIGER, R. Klimate der Erde. Gotha: Verlag Justus Perthes. 1928. Wall-map 150cmx200cm (link)

³² Municipal Statistics Report, developed by the Executive Secretary of Planning, Budget, and Finance (SEPOF) (Pará, 2006), based on data from IBGE (2004). ³³ Municipal Statistics Report, developed by the Executive Secretary of Planning, Budget, and Finance (SEPOF) (Pará,

^{2006),} based on data from IBGE (2004).

- 1) The driest month having average rainfall >60mm
- 2) The project area displays very little monthly and annual variation in temperature, ranging between 25 °C and 29 °C as a monthly average, with an annual average of 27 °C.

This classification is in accordance with the findings of a 2004 study by the Brazilian Executive Secretary of Science, Technology and the Environment³⁴, which classified the western half of the island as Tropical rainforest climate, and the eastern half as Tropical monsoon climate.

Geology, Topography and Soils

Relief and topography within the project area is flat to mildly hilly, with rock formations from either the Holocene or Pleistocene, rocks and stones largely absent, and poor drainage³⁵. This fits with the topography of the vast majority of Marajó, which is below < 25–30m a.s.l. In the western half of the island, where the project is located, the geological basis is of pre-Cambrian rocks of the Guiana Shield in the higher land to the to the northwest; and Cretaceous rocks of the Alter do Chão Formation to the west and southwest³⁶.

The general vegetation pattern on Marajó island described in the literature is that dense tropical rainforest (Portuguese: floresta ombrófila densa) is associated with older sediments found in the Western portion³⁷, clearly shown in Figure 6, below. The aforementioned authors describe this pattern as follows: "an open vegetation pattern dominates in areas with Holocene sedimentation, while ombrophyla forests are widespread on older deposits". In-line with this expectation pattern, the project area is covered with riparian dense tropical rainforest.

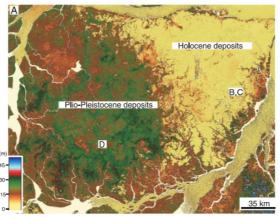


Figure 6 - The contrast in geology between west and eastern sides of Marajó island³⁸

Soil types across the project area were characterised by influence of water, in a pilot forest inventory³⁹ of the project area: the majority of soil types in every Ecomapuá property were of hydromorphic gley type, the majority being humic gley or low-humic gley, with occasional strips of yellow latosol.

³⁴ Lima, A.M.; Oliveira, L.L.; Fontinhas, R.L.; Lima R.J.S (SECTAM/NHM) (2004), "The Marajó Island: Historical Revision, Hydroclimatology. Hydrographical Basins and Management Proposals."

 ³⁵ A. Ribeiro de Barros (2001), "Inventário Florestal Amostral para empresa Santana Madeiras Ltda. no Município de Breves
 – Pará."
 ³⁶ Source: INPE/ PRODES municipal de forcetation de force

³⁶ Source: INPE/ PRODES municipal deforestation data, Breves municipality: <u>http://www.dpi.inpe.br/prodesdigital/prodesmunicipal.php</u>

³⁷ França, C.F., Pimentel, M.A., & Prost, M.T.R.C. (2010), "Geomorfologia e Paisagem: Contribuições à classificação de unidades da paisagem na região oriental da Ilha do Marajó, Norte do Brasil." VI Seminário Latino Americano de Geografia Física. II Seminário Ibero Americano de Geografia Física. Universidade de Coimbra.

 ³⁸ D. F. Rossetti and P. M. De Toledo (2006), "Biodiversity from a historical geology perspective: a case study from Marajó Island, lower Amazon." *Geobiology, vol. 4.*

³⁹ A. Ribeiro de Barros (2001), 'Inventário Florestal Amostral para empresa Santana Madeiras Ltda. no Município de Breves - Pará'.

Regarding soil content, the soils are described as being of gley type, therefore distinct from peat⁴⁰, therefore meeting applicability conditions of the methodology. For example, in the Fazenda Bom Jesus by Morris et al. ⁴¹: "all of the soil profiles observed were characterized by fine-textured silty clay, silty clay loam and silty loams throughout the soil profile. In a few instances, coarser textured surfaces with sand percentages greater than 30% occurred over the finer texture subsoil."

Socio-economic conditions

Industrial activity in the Furos de Breves micro-region is concentrated in timber production, the main competitors in the market being palm heart and açaí berries. In the three municipalities in which the project is located, almost 83% of the total value of production from these three products was represented by logged timber at the project start date, while around 17% was represented by palm heart and less than 1% by acai berries (Table 10 below, and figures 11 – 14 section 2.4). Adding to the dominance of timber in the local market, a considerable proportion of the timber production in Brazil is illegal, 36% according to the SFB⁴², making the true value of timber in the market considerably higher than these official figures. Therefore, despite a general decline in timber production in timber production in timber production in the Brazilian legal Amazon⁴³, the product remains the most important commercial product in the micro-region.

	Açaí	Palm heart	Timber Logs	TOTAL
Breves	69,333	573,132,636	3,355,960,545	
Curralinho	127,500	176,438,909	405,673,364	
São Sebastião da Boa Vista	930,000	59,021,545	130,646,545	
Total production (R\$)	1,126,833	808,593,091	3,892,280,455	4,702,000,379
Percentage total value of production	0.02%	17.20%	82.78%	

Table 10 - Annual average values of production in municipalities of project area (1992 - 2002) (R\$)⁴⁴

While palm heart is a largely commercial product, açaí is produced mainly for subsistence, being an integral and traditional part of the daily diet⁴⁵. Thus it forms only a small part of the commercial values above, while weights produced are higher than that of palm heart (Figure 7). Açaí is not considered a significant element of the deforestation dynamic as it does not require deforestation for its production⁴⁶. In fact, açaí production has been positively correlated with forest conservation in a study of Pará state municipalities⁴⁷.

Aspects of Furos de Breves' demography are presented in Table 12. The region had 204,114 inhabitants in 2010, with a density of 7.9 inhabitants per km², a majority (58%) of the population being concentrated in rural areas. This indicates an economy strongly tied to natural resources. The main forms of subsistence of this rural population are extraction of non-timber forest products (NTFPs) and small-scale farming⁴⁸. The main NTFPs extracted from the forest are acai berries and palm-heart, while crops planted include manioc, corn, and

⁴⁰ A. Ribeiro de Barros (2001), 'Inventário Florestal Amostral para empresa Santana Madeiras Ltda. no Município de Breves - Pará'

¹ Morris et al., 'Land Use and Soil Change on Fazenda Bom Jesus, Ilha Marajó , Pará, Brazil'.

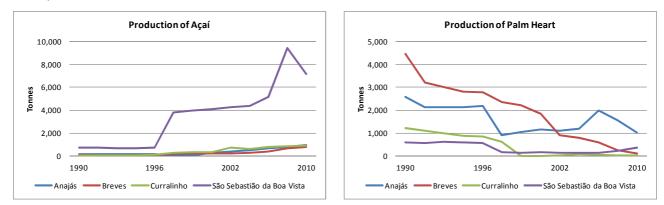
⁴² Serviço Florestal Brasileiro (SFB), Instituto de Pesquisa Ambiental da Amazônia (2011), "Florestas Nativas de Produção Brasileiras"

⁴³ SFB & IMAZON (2010), "A atividade madeireira na Amazônia brasileira: produção, receita e mercados".

⁴⁴ Sources: Instituto Brasileiro de Geografia e Estatística (IBGE).

⁴⁵ Fundação de Amparo e Desenvolvimento da Pesquisa (FADESP) (2002), 'Comunidades Agroextrativistas do Rio Mapuá – Breves/PA, Diagnóstico Socio-Econômico'.

⁴⁶ Interview: D. Meneses 23.11.12.


⁴⁷ Almeida et al. (2010), "Potencial para conservação do açaí: uma análise da produção de açaí e desmatamento no estado do Pará." In: 62 Reunião Anual da SBPC, 2010, Natal. Ciência do Mar: herança para o futuro. Natal: SBPC.

⁴⁸ Herrera, J. A. (2003), "Dinâmica e desenvolvimento da agricultura familiar: o caso de Vila Amélia – Breves, PA." Dissertação de mestrado. Universidade Federal do Pará.

VERIFIED CARB STANDARD

PROJECT DESCRIPTION: VCS Version 3

banana⁴⁹. Figure 7 below shows the tendency of commercial production in acaí berries and palm heart in the municipalities of Furos de Breves.

Figure 7 - (1992 - 2010) tendency in production of açaí and palm heart in the main reference region municipalities

Property name	Number of families	Number of families interviewed
Fazenda Brasileiro	04	04
Comunidade Bom Jesus	17	14
São Domingos	07	0
Fazenda Lago do Jacaré	50	0
Comunidade Vila Amélia	21	20

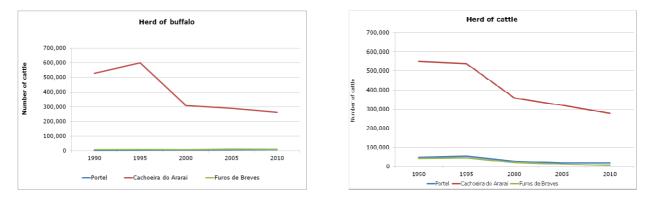
Table 11 – Families located in project areas and numbers interviewed⁵⁰

According to the social study of the project area and surroundings, 99 families in the project area, and an estimated 187 families in the reference region are known to rely on family agriculture and extractivism for subsistence^{51,52}, confirming the predominance of this mode of life. The residents' agricultural activities rely on slash-and-burn practices to clear land for plantation, as such subsistence agriculture is an important component of the dynamic of deforestation in the project area and reference region.

Municipalities: Furos de Breves Micro-region	Area (Km²)	Urban population	Rural population	Total population	Population growth rate (2000-2010)	Population density (inhabitants/Km ²)
Anajás	6,922	9,494	15,265	24,759	3.06	3.58
Breves	9,551	46,560	46,300	92,860	1.48	9.72
Curralinho	3,617	10,930	17,619	28,549	3.63	7.89

⁴⁹ Grupo Executivo do Estado do Pará para o Plano Marajó (GEPLAM) (2007), "Plano de desenvolvimento territorial sustentável do arquipélago do Marajó." ⁵⁰ Fundação de Amparo e Desenvolvimento da Pesquisa (FADESP) (2002), 'Comunidades Agroextrativistas do Rio Mapuá –

Breves/PA, Diagnóstico Socio-Econômico".


⁵¹ Fundação de Amparo e Desenvolvimento da Pesquisa (FADESP) (2002), 'Comunidades Agroextrativistas do Rio Mapuá -Breves/PA, Diagnóstico Socio-Econômico".

Amaral, D.D., Vieira, I.C.G., Salomão, R.P., Almeida, S.S., Silva, J.B.F., Costa Neto, S.V., Santos, J.U.M., Carreira, L.M.M. & Bastos, M.N.C. (2007), 'Campos e Florestas das bacias dos rios Atuá e Anajás. Ilha do Marajó, Pará. Museu Emílio Goeldi. Coleção Adolpho Ducke. Belém'

				00 1010110		
São Sebastião da Boa Vista	1,632	9,902	13,002	22,904	2.62	14.03
Afuá	8,372.80	9,478	25,564	35,042	1.73	4.19
Furos de Breves micro-region	30,095	86,364	117,750	204,114	2.5	7.9

Table 12 – Demographic statistics on the Furos de Breves micro-region⁵³

Figure 8 below illustrates the far lower cattle and buffalo production of Furos de Breves compared to the other micro-regions of Marajó Island. It is shown that cattle farming, being dependent on pastureland, is not a factor in the project area and reference region, being prevalent only on the eastern side of the island, as is further explained in terms of vegetation and geology in section 1.10.

Figure 8 – Distribution of buffalo and cattle herds across the micro-regions of Marajó Island⁵⁴

The economic context of the Project is therefore one of poverty, characterised by inequality, and low social indicators (Table 13). The average time spent in school in 2000 still did not exceed 4 years, and illiteracy is widespread. Furthermore, many rural communities in Breves do not have access to basic services and facilities such as sanitation, education, healthcare and electricity.

Municipalities	Proportion of population below poverty line (%)	Rate of completion of high school in the youth from 15 to 17 years (%)	Infant mortality (%)
Afuá	82,6	17	19,5
Anajás	81,4	16	26,1
Breves	78,4	18	31,6
Curralinho	78,5	13	25,4
São Sebastião da Boa Vista	77,0	32	32,5
Estado do Pará	27,7	36	22,9

Table 13 - Social indicators in the municipalities of the reference region⁵⁵

The socio-economic climate described is integrated into the Ecomapuá Amazon REDD Project's goals, as the future application of SOCIALCARBON® Standards, and the planned collaboration with a government

⁵³ Sources: Instituto Brasileiro de Geografia e Estatística (IBGE), 2010; PODM, 2010.

⁵⁴ Source: Instituto Brasileiro de Geografia e Estatística (IBGE)

⁵⁵ Sources: IBGE (2009;2010); PODM (2009; 2010)

environmental body⁵⁶, aims to deliver appropriate, integrated and quantifiable ecological and socio-economic benefits to the population of the project area.

Biodiversity

The Brazilian Government Ministry for the environment (Ministério do Meio Ambiente) included Marajó Island in its 2003 survey of Brazil's 900 priority areas for conservation⁵⁷. The entire island is classed within the ministry's highest priority category: "extremely high".

The combination of various forest types, fields, and areas under marine influence makes Marajó Island's vegetation unique in the Amazon biome. However, the great biodiversity which this environment harbours is little known⁵⁸. The island stands out as particularly important in relation to birdlife⁵⁹: Alfred Russel Wallace's pioneering study (1835) and a more recent compilation by Henriques and Oren (1997) put the island's avifauna at some 361 species. Moreover, two expeditions in 2007 and 2008 coordinated by Petrobras/CENPES, added a further 11 species to this list, illustrating the richness, the conservation value, and the insufficiency of study in this area.

Bird species of note include a broad range of aquatic birds, such as herons (*Egretta* sp.) and egrets (*Ardea* sp.), ducks *Dendrocygna* spp., ibis *Cercibis* spp., *Theristicus* spp., and rosette spoonbills *Ajaia ajaia*. Birds found here and in only few other places include white-bellied seedeaters *Sporophila leucoptera*, grassland yellow-finches *Sicalis luteola*, chalk-browed mockingbirds *Mimus saturninus*, tropical peewees *Contopus cinereus*, rufous-throated antbirds *Gymnopithys rufigula*, black-breasted puffbirds *Notharchus pectoralis*, and plain-bellied emeralds *Amazilia leucogaster*⁶⁰.

Concerning mammalian life, scientists have reported 99 species in the ecoregion which comprises the western half of Marajó Island, known as the *várzea*. Species which are endemic here include the armadillo *Dasypus septemcinctus*, bats (*Platyrrhinus recifinus*, *Natalus stramineus*, and *Molossops greenhalli*), primates such as marmosets (*Callithrix argentatado*), tamarins (*Saguinus midas*), night monkeys (*Aotus infulatus*), and savanna foxes (*Cerdocyon thous*). Cats include jaguars (*Panthera onca*) and pumas (*Puma concolor*)⁶².

Notable marine life includes mammals, such as the American manatee (*Trichechus manatus*), which is classed as Vulnerable⁶³, the Amazonian manatee (*Trichechus inunguis*), the Costelo sea dolphin (*Sotalia guianensis*), Tucuxi dolphin (*Sotalia fluviatilis*), and Boto Amazon River Dolphin (*Inia geoffrensis*)⁶⁴.

The characteristically large river fish include various freshwater stingrays (*Plesiotrygon*, *Paratrygon*, and *Potamotrygon* spp.)⁶⁵, Pacus (*Metynnis* and *Mylossoma* spp.), Tambaqui (*Colossoma macropomum*), Arapaima (*Arapaima gigas*), and Sardines (*Triportheus angulatus*).

1.10 Conditions Prior to Project Initiation

Vegetation Cover

⁵⁶ Currently under negotiation

⁵⁷ MMA (2003): <u>http://www.mma.gov.br/estruturas/chm/_arquivos/maparea.pdf</u>

⁵⁸ Congresso Brasileiro de Ornitologia 29 Jun – 04 Julho 2008. 'A Ornitologia no Cerrado e Ecótonos do Brasil'.

⁵⁹ Antonio A. F. Rodrigues, 'Priority Areas for Conservation of Migratory and Resident Waterbirds on the Coast of Brazilian Amazonia'. *Revista Brasileira de Ornitologia 15 (2) 209-218,* June 2007.

⁶⁰ WWF (2008), "The Encyclopedia of Earth": <u>http://www.eoearth.org/article/Maraj%C3%B3_varzea</u>

⁶²Source, WWF: <u>http://www.worldwildlife.org/science/wildfinder/profiles/nt0138.html</u>

⁶³ Source: http://www.iucnredlist.org

⁶⁴ Arquivos do Museu Nacional, Rio de Janeiro, v.66. n.2, (Jun 2008), 'Revisão do Conhecimento sobre os Mamíferos Aquáticos da Costa Norte do Brasil'.

⁶⁵ Factors affecting the distribution and abundance of freshwater stingrays (Chondrichthyes: Potamotrygonidae) at Marajó Island, mouth of the Amazon River'. *Pan-American Journal of Aquatic Sciences* (2009) 4 (1): 1-95_____

The vegetation in the present project was mapped on the basis of SIVAM Amazônia information sources⁶⁶. Two vegetation types were found to be present on the island: riparian (Portuguese: *aluvial*) dense tropical rainforest and lowland tropical rainforest.

Given that the morpho-structural features of the Ecomapuá Project's reference area match IBGE descriptions⁶⁷ of riparian dense tropical forest, and that all vegetation cover types identified by the Museo Emílio Goeldi study⁶⁸ fall within the class of riparian forests, it was determined that one single class of forest exists within the project area and reference region: riparian dense tropical rainforest (Figure 9).

Marajó Island's vegetation is characterised by the seasonal flooding and sedimentary deposits of the island⁶⁹. As indicated in the previous sections of geology and climate, rainforest is principally located in the western portion of Marajó island⁷⁰, while grasslands predominate in the east. The vegetation in Marajó's Western portion, while all within the riparian dense tropical rainforest class, is sub-divided into the following categories, broadly distinguished by the extent to which they are flooded:

- Lowland *terra firme* forest, with little flooding influence, this is the dominant type of forest in the Amazon rainforest, and was identified as dominating in the area of Marajó island studied by Amaral et al. (2007);
- The periodically flooded *várzea* forest is characteristic of the Marajó ecosystem, and is the most common forest type in floodable areas throughout the Amazon;
- The permanently flooded *igapó* forest type is identified in the project area by the pilot forest inventory described below⁷¹;
- Secondary forest establishes itself after human deforestation activity, and is often associated, in *terra firme* and agricultural regions, with planting of manioc, banana, corn and, in floodable regions, the açaí palm.

Carbon stocks

The utilized carbon stocks in the Project were calculated on the basis of biomass values from the study presented in Table 14 below. An average of biomass values from Nogueira (2008) for riparian dense tropical rainforest was used.

This value was chosen after a literature search revealed that this study had the most accurate biomass values for the vegetation-cover of the Project's reference region. A detailed description of this is included in Annex V (Definition of Carbon Stocks).

Vegetation	Aboveground Biomass (Mg ha ⁻¹)	Belowground Biomass (Mg ha ⁻¹)	Total biomass (Mg ha ⁻¹)
Riparian Dense Tropical Rainforest	299.3	61.5	360.8

Table 14 – Biomass values used for the class "forest"⁷²

⁶⁶Sistema de vigilância da Amazônia: SIVAM

⁶⁷ IBGE (1992), "Manual Técnico Da Vegetação Brasileira"

⁶⁸ Amaral, D.D., Vieira, I.C.G., Salomão, R.P., Almeida, S.S., Silva, J.B.F., Costa Neto, S.V., Santos, J.U.M., Carreira, L.M.M. & Bastos, M.N.C. (2007), 'Campos e Florestas das bacias dos rios Atuá e Anajás. Ilha do Marajó, Pará. Museu Emílio Goeldi. Coleção Adolpho Ducke. Belém'.

Emílio Goeldi. Coleção Adolpho Ducke. Belém'. ⁶⁹ Amaral, D.D., Vieira, I.C.G., Salomão, R.P., Almeida, S.S., Silva, J.B.F., Costa Neto, S.V., Santos, J.U.M., Carreira, L.M.M. & Bastos, M.N.C. (2007), 'Campos e Florestas das bacias dos rios Atuá e Anajás. Ilha do Marajó, Pará. Museu Emílio Goeldi. Coleção Adolpho Ducke. Belém'.

⁷⁰ Eliana da C. Segundo (2009) 'Estudo de Energia Eólica Para a Ilha de Marajó - PA'. *INPE*.

⁷¹ A. Ribeiro de Barros (2001), 'Inventário Florestal Amostral para empresa Santana Madeiras Ltda. no Município de Breves – Pará'.

⁷² Nogueira, E.M. (2008), "Densidade da Madeira e Alometria de Arvores em Florestas do Arco do Desmatamento: Implicações para Biomassa e Emissão de Carbono a Partir de Mudanças no Uso da Terra na Amazônia Brasileira." 151 p, INPA, Manaus.

The biomass values presented in Table 14 were not accompanied with standard deviations, as they were not directly measured but estimated values, however the standard deviation values for the DAP and dry biomass which underlie the biomass were known, and these were integrated in the biomass values above.

In order to convert biomass into carbon, and carbon into carbon-dioxide (see Table 16), the conversion factors defined in table 15 were used.

Conversion Factors				
Biomass to Carbon	0.5			
C to CO ₂	3.666666667			

Table 15 - Biomass to CO₂ conversion factors⁷³

Vegetation	Aboveground CO_2 - Cabicl (t CO_2 ha ⁻¹)	Belowground CO_2 - Cbbicl (tCO ₂ ha ⁻¹)	Total CO ₂ - Ctoticlt (tCO ₂ ha ⁻¹)
Riparian Dense Tropical Rainforest	548.72	112.75	661.47

Table 16 – Average CO2 stock per hectare in the Brazilian Amazon (90% CI) "forest" class,
calculated based on Table 14

Pilot Forest Inventory of the Project Area

The vegetation within the project area itself was assessed in a 2001 pilot forest inventory⁷⁴, consisting of 13 samples of 2,500m², taken from four of the six properties that compose the project area. The 2001 inventory confirmed that the general class is riparian dense tropical rainforest, identifying the three sub-classes previously mentioned: *várzea, igapó*; and bands of *terra firme* tropical wet forest.

Species of commercial interest are predominantly found in areas of *terra firme* forest with occasional small watercourses, such as: *C. odorata*, *V. maxima*, *G. glabra*, *V. americana*, and *O. glomerata*, among others. Further trees of notable commercial value present in the project area, which are of special conservation interest⁷⁵, include: *V. surinamensis*, and *C. pentandra*, as well as the Buriti palm, *M. flexuosa*, which is commonly replaced with commercially valuable Açaí palm, *E. oleracea*, by the island's farmers.

The species list from the pilot forest inventory is provided in Table 17 below.

N°	Common Name	Scientific Name	Family	N° of Trees	% n° of Trees
1	abiu	Pouteria krukovii	SAPOTACEAE	5	0.3%
2	abiu casca grossa	Planchonella pachycarpa	SAPOTACEAE	12	0.8%
3	abiu cutiti	Pouteria macrophylla	SAPOTACEAE	2	0.1%
4	abiurana	Pouteria macrophylla	SAPOTACEAE	6	0.4%
5	acapu	Vouacapoua americana	CAESALPINIACEAE	26	1.7%
6	acariquara	Minquartia guianensis	OLACACEAE	10	0.6%
7	amapá	Parahancornia amapa	APOCYNACEAE	18	1.2%

⁷³ IPCC, 2003. Good practice guidance for land use, land-use change and forestry. Kanagawa: IGES, 2003. Available at: http://www.ipcc-nggip.iges.or.jp/public/gpglulucf/gpglulucf.html

 ⁷⁴ A. Ribeiro de Barros (2001), 'Inventário Florestal Amostral para empresa Santana Madeiras Ltda. no Município de Breves – Pará'.

⁷⁵ WWF (2008), "The Encyclopedia of Earth": <u>http://www.eoearth.org/article/Maraj%C3%B3_varzea</u>

8	anani	Symphonia globulifera	CLUSIACEAE	67	4.4%
9	angelim fava	Hymenolobium flavum	FABACEAE	1	0.1%
10	angico	Anadenanthera peregrine	MIMOSACEAE	74	4.8%
11	anoera	Licania macrophylla	CHRYSOBALANACEAE	41	2.7%
12	axixá	Sterculia speciosa	STERCULIACEAE	3	0.2%
13	barrote	Tetragastris panamensis	BURSERACEAE	48	3.1%
14	breu branco	Tratinnickia burseraefolia	BURSERACEAE	36	2.3%
15	caju	Anacardium giganteum	ANACARDIACEAE	12	0.8%
16	carapanã	Aspidosperma laxiflorum	APOCYNACEAE	3	0.2%
17	caripé	Licania heteromorpha	CHRYSOBALANACEAE	4	0.3%
18	cariperana	Licania micrantha	ROSACEAE	2	0.1%
19	casca seca	Ouratea castaneaefolia	OCHNACEAE	58	3.8%
20	cedro	Cedrela odorata	MELIACEAE	10	0.6%
21	cedrorana	Cedrelinga catenaeformis	MIMOSACEAE	23	1.5%
22	copaiba	Copaifera reticulata	CAESALPINIACEAE	2	0.1%
23	cumaru	Dipteryx odorata	FABACEAE	19	1.2%
24	cupiúba	Goupia glabra	CELASTRACEAE	36	2.3%
25	cupuí	Theobroma subincanum	STERCULIACEAE	22	1.4%
26	envira preta	Guatteria procera	ANNONACEAE	18	1.2%
27	esponjeiro	Parkia oppositifolia	MIMOSACEAE	19	1.2%
28	farinha seca	Lindackeria paraensis	LEGUMINOSAE	7	0.5%
29	fava	Panopsis sessilifolia	PROTEACEAE	25	1.6%
30	fava bolota	Parkia pendula	MIMOSACEAE	4	0.3%
31	fava orelha de macaco	Enterlobium maximum	MIMOSACEAE	2	0.1%
32	faveira	Parkia nitida	MIMOSACEAE	2	0.1%
33	goiabinha	Myrciaria floribunda	MYRTACEAE	8	0.5%
34	guajará	Neoxythece robusta	SAPOTACEAE	43	2.8%
35	ingá vermelha	Inga heterophylla	MIMOSACEAE	88	5.7%
36	jatobá	Hymenaea courabril	CAESALPINIACEAE	11	0.7%
37	jutaí	Hymenaea parvifolia	LEGUMINOSAE	1	0.1%
38	louro	Ocotea glomerata	LAURACEAE	25	1.6%
39	louro amarelo	Licania rigida	LAURACEAE	4	0.3%
40	louro cheiroso	Aniba paraense	LAURACEAE	12	0.8%
41	louro pimenta	Licania armeniaca	LAURACEAE	9	0.6%
42	louro piriquito	Ocotea guianensis	LAURACEAE	19	1.2%
43	louro preto	Ocotea caudate	LAURACEAE	13	0.8%
44	louro vermelho	Ocotea rubra	LAURACEAE	11	0.7%
45	maçaranduba	Manilkara huberi	SAPOTACEAE	1	0.1%
46	macucu	Aldina heterophylla	LEGUMINOSAE CAESALPINOIDEAE	102	6.6%
47	mari	Cassia leiandra	LEGUMINSOAE CAESALPINOIDEAE	5	0.3%
48	marupá	Simaruba amara	SIMARUBACEAE	10	0.6%
49	matá matá	Eschweilera odorata	LECHYTHIDACEAE	269	17.5%

50	morototó	Didymopanax morototoni	ARALIACEAE	11	0.7%
51	murta	Myreia falax	MYRTACEAE	5	0.3%
52	mururé	Brosimum obovata	MORACEAE	1	0.1%
53	pará pará	Jacaranda copaia	BIGNONIACEAE	16	1.0%
54	pau de remo	Rauwolfia pentaphylla	LEGUMINOSAE	18	1.2%
55	pente de macaco	Apeiba echinata	TILIACEAE	9	0.6%
56	piquiá	Caryocar villosum	CARYOCARACEAE	5	0.3%
57	piquiarana	Caryocar glabrum	CARYOCARACEAE	5	0.3%
58	pracuuba	Mora paraensis	CAESALPINIACEAE	1	0.1%
59	quaruba	Vochysia maxima	VOCHYSIACEAE	3	0.2%
60	quaruba cedro	Vochysia inundata	VOCHYSIACEAE	21	1.4%
61	ripeiro	Guatteria calophylla	ANNONACEAE	32	2.1%
62	seringueira	Hevea brasiliensis	EUPHORBIACEAE	5	0.3%
63	sorva	Couma guianensis	APOCYNACEAE	17	1.1%
64	sucupira	Diplotropis martiusii	FABACEAE	2	0.1%
65	tachi	Sclerolobium chrysophyllum	CAESALPINIACEAE	22	1.4%
66	tamanqueira	Zanthoxylum regneliana	RUTACEAE	2	0.1%
67	tanimbuca	Buchevania capitata	COMBRETACEAE	3	0.2%
68	tatapiririca	Tapirira guianensis	ANACARDIACEAE	18	1.2%
69	tento	Ormosia paraensis	FABACEAE	5	0.3%
70	ucuuba	Virola Surinamensis	MYRISTICACEAE	12	0.8%
71	ucuubarana	Lryanthera grandis	MYRISTICACEAE	73	4.7%
72	urucarana	Sloanea grandiflora	TILIACEAE	6	0.4%
		TOTAL		1,540	100%

Table 17 - Species found within the project area⁷⁶

⁷⁶ A. Ribeiro de Barros (2001), "Inventário Florestal Amostral para empresa Santana Madeiras Ltda. no Município de Breves - Pará."

PROJECT DESCRIPTION: VCS Version 3

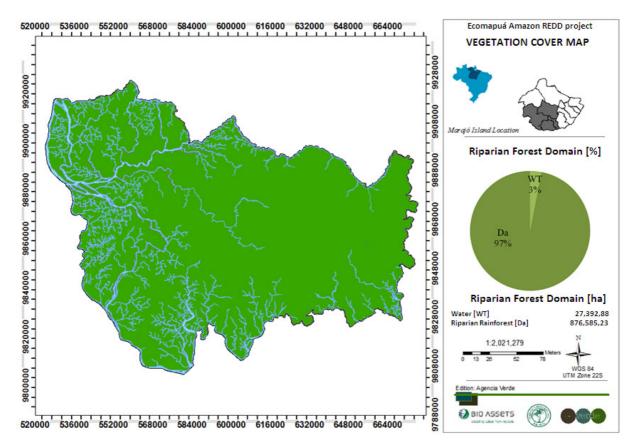


Figure 9 – Vegetation cover of the reference region and project area

GIS MAPPING, REMOTE SENSING TECHNIQUES

In order to analyse land use and land cover (LU/LC) prior to project initiation, described in the present section, remote sensing satellite analysis was carried out, which is described below.

Historical reference period

The historical reference period is the period in which analysis of LU/LC-change within the reference region and project area is carried out. Due to the availability of satellite images, the historical reference period for the present project comprised analysis of images from 1993, 1994, 1995, 1999 and 2001 (Table 18 below). In accordance with the methodology, this period does not exceed 10 - 15 years in span and it ends as close as possible to the REDD project start date (≤ 2 years). Due to the conditions of the region, some satellite images covering the reference region at the year of 1992 were missing and not available, thus not being possible to complete the whole series. In addition, there was a high cloud-cover level in the available images of this year. Thus, this year was not included into the analysis. The year of 1993 was then utilized to exclude from the project area, forests that are less than 10 years old at the project start date.

Image classification

The first step of the automatic classification of land-use in the reference area was done on Idrisi 17.0 Selva software, using images from the Landsat 5 satellite, and in accordance with its 30m resolution – and that of

PROJECT DESCRIPTION: VCS Version 3

PRODES⁷⁷ and SIVAM, which were image sources used in classification, and also have 30m resolution – the minimum mapping unit was defined at 30x30m (0.09ha), therefore falling easily to the methodology requirement that the MMU cannot be larger than 1ha. The images were downloaded from the Brazilian National Space Research Institute catalogue⁷⁸. The project reference region is located between scenes 225/061 and 224/061, of the Landsat 5 satellite.

Tests using supervised classification yielded poor quality results in terms of high variation of pixel colour for a single land use, and poor distinction between different land-uses. Therefore unsupervised classification was opted for, using the *cluster* method of the ldrisi software, which identifies land uses by grouping histogram values into their most common values. The results of the unsupervised classification were studied by an analyst in order to identify the land-use classes represented by each group. As satellite scenes are registered on different days, the scenes were classified separately in order to avoid confusion caused by varying weather and atmospheric conditions.

After various unsatisfactory tests using various permutations of bands 1 - 5, good results were obtained using only band 4, clearly showing the forest – non-forest distinction, across practically all scenes and all years concerned. Therefore this was adopted as the methodology for the present project.

A post-classification refinement process was necessary, which involved manual adjustment to remedy cloud obstruction of images, comparing images with previous and subsequent years to determine whether obscured areas were forest or not. This was also necessary to remove "debris", or isolated pixels, left behind by the unsupervised classification method⁷⁹.

Vector	Sensor	Resolution		Coverage	Acquisition date	Scene	
		Spatial (m)	Spectral (µm)	(Km²)	DD/MM/YY	Path	Row
LANDSAT 5	TM	30	0,45 - 12,5	31,820	09/06/1993	224	61
LANDSAT 5	TM	30	0,45 - 12,5	31,820	04/09/1993	225	61
LANDSAT 5	TM	30	0,45 - 12,5	31,820	30/07/1994	224	61
LANDSAT 5	TM	30	0,45 - 12,5	31,820	23/09/1994	225	61
LANDSAT 5	TM	30	0,45 - 12,5	31,820	19/09/1995	224	61
LANDSAT 5	TM	30	0,45 - 12,5	31,820	12/10/1995	225	61
LANDSAT 5	TM	30	0,45 - 12,5	31,820	11/11/1997	224	61
LANDSAT 5	TM	30	0,45 - 12,5	31,820	02/11/1997	225	61
LANDSAT 5	TM	30	0,45 - 12,5	31,820	28/07/1999	224	61
LANDSAT 5	TM	30	0,45 - 12,5	31,820	03/07/1999	225	61
LANDSAT 5	TM	30	0,45 - 12,5	31,820	05/12/2000	224	61
LANDSAT 5	TM	30	0,45 - 12,5	31,820	07/09/2000	225	61
LANDSAT 5	TM	30	0,45 - 12,5	31,820	09/07/2001	224	61
LANDSAT 5	TM	30	0,45 - 12,5	31,820	01/08/2001	225	61

Finally, the hydrography of the whole region was drawn in a 1:10,000 visualization window based on the Landsat satellite (30m resolution). This same hydrography was applied for each mapped year, as the hydrography itself was invariable.

Table 18 - Data used for historical reference period

The project area contains only areas which were defined as "forest" 10 (\pm 2) years prior to the project start date, as depicted in the forest cover benchmark maps in figure 10 below.

⁷⁷ PRODES weblink: <u>http://www.dpi.inpe.br/prodesdigital/prodes.php</u>

⁷⁸ INPE: <u>http://www.dgi.inpe.br/CDSR/</u>

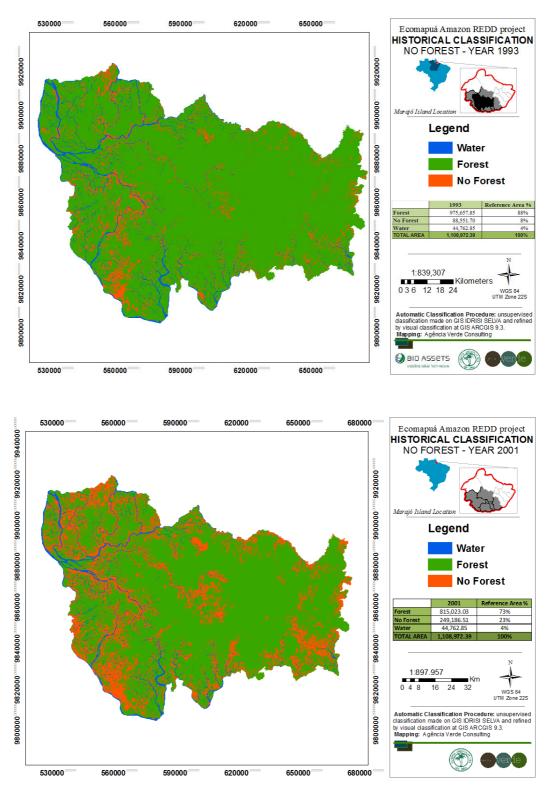


Figure 10 – Forest cover benchmark maps from 1993 and 2001

1.11 Compliance with Laws, Statutes and Other Regulatory Frameworks

According to the Brazilian Forest Code (Law Nº 4.771, 15/09/1965 - D.O.U. of 16/09/65⁸⁰), all rural estates located in forest zones should have:

I - Permanent preservation area: protected areas covered or not by native vegetation, with the environmental function of preserving water resources, landscape, geological stability, biodiversity, gene flow of plants and animals, protect the soil and ensure the well-being of human populations

II - Legal Reserve (LR): an area located within a rural property or possession, except for the permanent preservation, necessary for the sustainable use of natural resources, conservation and rehabilitation of ecological processes, biodiversity conservation and shelter, and protection of native flora and fauna. In the Brazilian Legal Amazon⁸¹, eighty percent (80%) of a rural property should be preserved as LR.

In the Reference Region, although 80% of native vegetation in land properties should be preserved as LR, there is a general non-compliance with the Brazilian Forest Code, as around 23.4% of native vegetation has already been suppressed in 2001 (i.e. there was a deficit of 3.4% of native forest areas that should not have been suppressed in the Reference Region before the crediting period start date).

One of the main ways to combat deforestation in Brazil are the command and control mechanisms, such as effective monitoring, requiring compliance with environmental legislation along with a greater state presence. However, this does not seem effected in most regions of the country, because the weakness of the government to fulfil these responsibilities in comparison with other social goals and economic interests has put Brazil among the world's largest deforesters⁸².

In spite of the legal provisions intended to preserve at least 80% of the Amazon Forest coverage, lack of law enforcement by local authorities along with public policies seeking to increase commodities production and encourage land use for agricultural, bio energy and cattle breeding purposes created a scenario of complete disregard of the mandatory provisions of the Forest Code. In addition to that, to cover vast distances of areas with low demographic density makes tracking of illegal activities and land surveillance very difficult for the authorities⁸³.

Therefore, all calculations were made assuming that the reference region has a general non-compliance with the Brazilian Forest Code. Thus, the baseline scenario considers the potential of unplanned deforestation in the project area to surpass the limits stipulated by the Law.

1.12 Ownership and Other Programs

1.12.1 Proof of Title

The five properties making up the Ecomapuá Amazon REDD Project are owned by the company Ecomapuá Conservação Ltda. The legal documents proving the land title and ownership of each property will be made available to the auditors during the validation process, specifically in Annex II and Annex III.

⁸⁰ BRASIL. Law nº. 4.771, of 15 September 1965. Forest Code. Diário Oficial [da] República Federativa do Brasil, Brasília, DF, 16 de set. 1965.

⁸¹ The concept of Legal Amazonia was originated in 1953 and its boundarias arise from the necessity of planning the economic development of the region. For this reason, Legal Amazonia's boundaries do not correspond to those of the Amazon biome. The former has an area of approximately 5 million km², distributed through the entirety or a proportion of 9 Brazilian states.

⁸² Food And Agriculture Organization Of The United Nations (FAO) (2011), "State of the World's Forests 2011." FAO Forestry Paper. Rome, Italy.

⁸³ MOUTINHO, P. et al. REDD no Brasil: um enfoque amazônico: fundamentos, critérios e estruturas institucionais para um regime nacional de Redução de Emissões por Desmatamento e Degradação Florestal – REDD. Brasília, DF: Instituto de Pesquisa Ambiental da Amazônia, 2011.

PROJECT DESCRIPTION: VCS Version 3

1.12.2 Emissions Trading Programs and Other Binding Limits

Not applicable.

1.12.3 Participation under Other GHG Programs

This project has not been registered, and is not seeking registration under any other GHG Programs.

1.12.4 Other Forms of Environmental Credit

The project area has not created any other form of environmental credit. This project has not been registered in any other credited activity, and no VCUs have been assigned to the project area so far.

The project does not intend to generate any other form of GHG-related environmental credit for GHG emission reductions or removals claimed under this VCS project.

1.12.5 Projects Rejected by Other GHG Programs

Not applicable. This project is not requesting registration in any other GHG Programs nor has the project been rejected by any other GHG programs.

1.13 Additional Information Relevant to the Project

Eligibility Criteria

This is not a grouped project.

Leakage Management

The leakage management plan and maps of the leakage management area are located in section 1.9, Project Location, of the present VCS-PD.

Commercially Sensitive Information

N/A.

Further Information

N/A.

2 APPLICATION OF METHODOLOGY

2.1 Title and Reference of Methodology

Approved VCS Methodology VM0015, version 1.1 Methodology for Avoided Unplanned Deforestation

2.2 Applicability of Methodology

Applicability Conditions	Justification of Applicability
a) Baseline activities may include planned or unplanned logging for timber, fuel-wood collection, charcoal production, agricultural and grazing activities as long as the category is unplanned deforestation according to the most recent VCS AFOLU requirements.	None of the baseline land-use conversion activities are legally designated or sanctioned for forestry or deforestation, and hence the project activity qualifies as avoided unplanned deforestation. This is in accordance with the definition of planned deforestation under the VCS AFOLU Requirements v3.1. The primary land uses in the baseline scenario consists of three overlapping activities: clearing for timber collection, extraction of palm-heart and clearing of plantation land, therefore the present criteria are fulfilled
b) Project activities may include one or a combination of the eligible categories defined in the description of the scope of the methodology (table 1 and figure 2).	Within the categories of Table 1 and Figure 2 of the methodology, the present project activity falls within category A, "Avoided Deforestation without Logging". The reason is that the project area contains only riparian dense tropical rainforest, and degradation is not included in either the baseline or project scenario.
c) The project area can include different types of forest, such as, but not limited to, old growth forest, degraded forest, secondary forests, planted forests and agro-forestry systems meeting the definition of "forest".	The REDD project area is 100% made up of riparian dense tropical rainforest, as described in section 1.10 of the present VCS-PD. No deforested, degraded or areas otherwise modified by humans were included in the project area at Project Start Date.
d) At project commencement, the project area shall include only land qualifying as "forest" for a minimum of 10 years prior to the project start date.	The project area consisted of 100% tropical rainforest in 1993 – 10 years prior to project start date – all of which conformed to the FAO definition of forest ⁸⁴ . This was ascertained using satellite images, as described in section 1.10 of the present VCS-PD.
e) The project area can include forested wetlands (such as bottomland forests, flood plain forests, mangrove forests) as long as they do not grow on peat. Peat shall be defined as organic soils with at least 65% organic matter and a minimum thickness of 50 cm. If the project area includes a forested wetlands growing on peat (e.g. peat swamp forests), this methodology is not applicable.	As described in section 1.9 of the present VCS-PD, all soil types are mineral, as they are in the entirety of Marajó Island ^{85,86,87} . Therefore, none of the project area grows on peat, satisfying this applicability criterion.

⁸⁴ FAO forest definition: "Land with tree crown cover (or equivalent stocking level) of more than 10 percent and area of more than 0.5 hectares (ha). The trees should be able to reach a minimum height of 5 meters (m) at maturity *in situ*." Available at: http://www.fao.org/docrep/006/ad665e/ad665e06.htm
 ⁸⁵ Morris et al., 'Land Use and Soil Change on Fazenda Bom Jesus, Ilha Marajó , Pará, Brazil'
 ⁸⁶ A. Ribeiro de Barros (2001), 'Inventário Florestal Amostral para empresa Santana Madeiras Ltda. no Município de Breves

⁻Pará' ⁸⁷ D. F. Rossetti and P. M. De Toledo (2006), "Biodiversity from a historical geology perspective: a case study from Marajó Island, lower Amazon." *Geobiology, vol. 4.*

2.3 Project Boundary

The project area is composed of five properties as described in section 1.9. Given that the coordinates represented by these properties are extensive, the area contour coordinates of the *fazendas* composing the Ecomapuá Amazon REDD Project are presented in Annex I.

The leakage belt is formed of an area primarily to the north-west of the project, and also adjoining the Fazenda Lago do Jacaré to the other properties, as shown in Figure 3 (section 1.9), these do not form part of the REDD project.

The sum of the five properties comprising the project area – defined in accordance with the methodology's rules governing the latter – as well as the size of the leakage belt, are displayed in Table 19 below.

Name	Net Forest Area (ha)
Project Area	86,269.83
Leakage Belt	119,037.32

Table 19 – Forested areas within the PA and LK

Carbon pools	Included / Excluded	Justification / Explanation of choice		
Above ground	included	Stock change in this pool is always significant		
Above-ground	Non-Tree: Excluded	No existence of perennial crops as final class		
Below-ground	Included	Stock change in this pool is significant		
Dead wood	Exluded	Not significant.		
Harvested wood products	Excluded	Not significant.		
Litter	Excluded	Not to be measured according to VCS Program Update of May 24th, 2010		
Soil organic carbon	Excluded	Recommended when forests are converted to cropland. Not to be measured in conversions to pasture grasses and perennial crop according to VCS Program Update of May 24th, 2010.		

Table 20 - Carbon pools included or excluded within the boundary of the proposed AUD project activity

In accordance with the Methodology, approximately 1/10 of the carbon stock in the below-ground pool of the initial "forest" class will be released in a ten year interval.

This is further discussed in section 3.1, baseline emissions.

Sources	Gas	Included/TBD/ excluded	Justification / Explanation of choice
Biomass burning	CO2	Excluded	No biomass burning increase is predicted to occur in the project scenario compared to the baseline case. Therefore considered insignificant.
	CH_4	Excluded	As above.
	N ₂ O	Excluded	Considered insignificant according to VCS Program Update of May 24th, 2010.

	CO ₂	Excluded	Not a significant source
Livestock emissions	CH₄	Excluded	No livestock agriculture increase is predicted to occur in the project scenario compared to the baseline case. Therefore considered insignificant.
	N ₂ O	Excluded	As above.

Table 21 - Sources and GHG included or excluded within the boundary of the proposed AUD project activity

2.4 Baseline Scenario

In the baseline scenario, forest land is expected to be converted to non-forest land by the agents of deforestation acting in the reference region, project area and leakage belt, as described below. Therefore, project falls into the AFOLU-REDD category, specifically: Avoided unplanned deforestation (AUD). The revenue from the present REDD project is essential to maintain this area as standing forest, as described under additionality (section 2.5), as well as to carry out the environmental education and plantation activities involved in the implementation and leakage management of the present project.

Degradation was not considered in the present REDD project, which is in accordance with methodology requirement, which define "forest" and "non-forest" as the minimum land-use and land-cover classes. The principal reasons for discounting degradation were:

- Impossibility of detection of degradation with the resolution of satellite images described under "image classification" (section 1.10);
- Non-availability of widely accepted methods for quantifying and monitoring with confidence⁸⁸ of the expected type of degradation, which is local fuelwood collection^{89,90}, via remote sensing, being the method used in the present project.

ANALYSIS OF AGENTS, DRIVERS AND UNDERLYING CAUSES OF DEFORESTATION

As specified in the methodology, the analysis of deforestation agents is important for two reasons: i) estimating the quantity and location of future deforestation; and ii) Designing effective measures to address deforestation, including leakage prevention methods.

Importantly, in terms of analysing deforestation patterns, the agents below are not considered separately, but as being spatially overlapping and forming a single deforestation dynamic. Thus their activity is indistinguishable in reality and in terms of GIS analysis. The historical pattern of colonization in the area and available field studies show that the resident families practicing agricultural, commercial timber harvest, and extractivist activities are mainly responsible for deforestation in the area ^{94,95,96}. The resident families feed the supply chain for all the products concerned⁹⁷. The three agents identified as composing the dynamic of deforestation, therefore, are:

⁸⁸ COP 17 (2011), "GOFC – GOLD Sourcebook COP17, Version 1" (p.2 – 110, p.1 – 5)

 ⁸⁹ Amaral, D.D., Vieira, I.C.G., Salomão, R.P., Almeida, S.S., Silva, J.B.F., Costa Neto, S.V., Santos, J.U.M., Carreira, L.M.M. & Bastos, M.N.C. (2007), 'Campos e Florestas das bacias dos rios Atuá e Anajás. Ilha do Marajó, Pará. Museu Emílio Goeldi. Coleção Adolpho Ducke. Belém'
 ⁹⁰ Fundação de Amparo e Desenvolvimento da Pesquisa (FADESP) (2002), "Comunidades Agroextrativistas do Rio Mapuá –

⁹⁰ Fundação de Amparo e Desenvolvimento da Pesquisa (FADESP) (2002), "Comunidades Agroextrativistas do Rio Mapuá – Breves/Pa: Diagnóstico Socio-Econômico. Convênio UFPA/FADESP/NOVA AMAFRUTAS, 2002."

⁹⁴ Interview: D. Meneses 23.11.12.

⁹⁵ Fundação de Amparo e Desenvolvimento da Pesquisa (FADESP) (2002), "Comunidades Agroextrativistas do Rio Mapuá – Breves/Pa: Diagnóstico Socio-Econômico. Convênio UFPA/FADESP/NOVA AMAFRUTAS, 2002."

- Timber harvesting, both legal and illegal;
- Extraction of palm-heart;
- Deforestation for subsistence agriculture land;

The agents composing the dynamic of deforestation are discussed below:

Timber harvesting

Economic data¹⁰⁷ sources between 1994 and 2010 (see figures 11 – 14 below), show that timber stands out as having the highest values of annual production in the project area municipalities of Breves and Curralinho (figures 11 - 14 below)¹⁰⁸, where 75% of the project area is located.

The large-scale commercial logging for timber which occurs on Marajó Island is sold on local, national and international markets¹⁰⁹. The economic demand for timber peaked in Breves municipality in the 1970 and 1980 decades, and has declined since 2000 due to environmentalist pressure¹¹⁰. However, beyond the high production level shown in official data (figures 11 – 14 below), the production of timber continues to be conducted illegally: studies' estimate that 36% of Brazil's timber production is illegal¹¹¹. Illegal wood harvesting is known to take place within the reference region and project area¹¹², as shown in Figure 15 below by large quantities of illegal timber being transported to the sawmills by riverboat .

Sawmills located on the riverbanks are the first destination for timber before it is taken to markets, the main market being located in the city of Breves.

Timber production was the pre-project activity, being that Santana Madeiras Ltda. timber company exploited the area before its acquisition by Ecomapuá Conservação Ltda., the project proponent of the present project¹¹³. This increased the facility and incentive for residents of the project area to carry out deforestation and sale of timber in the baseline case.

Therefore, timber production coupled with subsistence agriculture and extraction of non-timber forest products is the key alternative land use to the project, which would have predominated in the baseline. This contributes to the Project's additionality, as discussed further in section 2.5.

Palm heart extraction

Large areas of land in the Furos de Breves micro-region have been devastated by non-sustainable extractivism practices. Palm-heart comes from the acaí palm (Euterpe olerácea), which is naturally abundant in the Marajó ecosystem, however palm heart extraction is a destructive agent of deforestation because it is highly spaceintensive - it is estimated that 24,000ha would be necessary to maintain the production of 100 tons of palm heart

¹¹³ São Paulo, 19.07.01 - "Instrumento particular de Alteração de Contrato Social, Santana Madeiras Ltda."

⁹⁶ P. G. Martorano (September 2002) "Caracterização da vegetação e uso do solo das terras pertencentes à empresa Ecomapuá Conservação Ltda No Município de Breves, Pará"

Herrera, J. A. (2003), "Dinâmica e desenvolvimento da agricultura familiar: o caso de Vila Amélia - Breves, PA." Dissertação de mestrado. Universidade Federal do Pará.

 ¹⁰⁷ The Brazilian Institute for Geography and Statistics (IBGE): <u>http://www.ibge.gov.br/home/</u>
 ¹⁰⁸ Source: IBGE Cidades: <u>http://www.ibge.gov.br/cidadesat/topwindow.htm?1</u>

¹⁰⁹ Fundação de Amparo e Desenvolvimento da Pesquisa (FADESP) (2002), 'Comunidades Agroextrativistas do Rio Mapuá - Breves/PA, Diagnóstico Socio-Econômico'.

¹¹⁰ Fundação de Amparo e Desenvolvimento da Pesquisa (FADESP) (2002),, "Comunidades Agroextrativistas do Rio Mapuá Breves/PA: Diagnóstico Socio-Econômico."
 ¹¹¹ Serviço Florestal Brasileiro (SFB), Instituto de Pesquisa Ambiental da Amazônia (2011), "Florestas Nativas de Produção

Brasileiras".

¹¹² Fundação de Amparo e Desenvolvimento da Pesquisa (FADESP) (2002), 'Comunidades Agroextrativistas do Rio Mapuá Breves/PA, Diagnóstico Socio-Econômico'.

per month - and demand for the product has been growing since at least the 1990s¹¹⁵. The natural occurrence of the species is supplemented by plantation or enrichment in order to meet this high demand¹¹⁶, and the average monthly production of the four municipalities of the project area is 102 tons of palm heart.

Family/ subsistence agriculture

Subsistence agriculture is the foundation of the livelihood of project area and reference region residents^{120,121}. Studies of the project area and surroundings^{122,123} show that subsistence agriculture is an important component of the deforestation dynamic, although it does not appear in the economic figures as the products - being primarily manioc and corn - are practically exclusively for subsistence purposes, with little potential for insertion into the market, because of low productivity and lack of access to credit, as well as an absence of political support¹²⁴.

Degraded and deforested areas within the project have been linked primarily to subsistence farming, specifically planting of manioc¹²⁵. Key aspects of the land use cycle are as follows: approximately 4 hectares are required per family over three years^{126,127}. Thus, the agricultural cycle involves the clearing of an approximately 4 hectare plot of land per family to be used for three years, followed by 12 years fallow, and subsequent re-use of the same area^{128,129}. In more detail, first commercially-valuable products, timber, acaí and palm-heart, are extracted, then the land is cleared using slash and burn techniques, with the ashes serving as fertilizer¹³⁰. The main crops planted are manioc and corn.

These farmers have traditionally lived in a condition of dependence upon land owners, with practically no rights and carrying out activities of illegal or uncertain legal status¹³⁷. The number of families living within the project area itself is estimated at 99, with some 188 families known to be in the reference region.

Thus although subsistence farming is not present in the economic figures (figures 11 - 14 below) due to not participating in the market economy, it is a key component of the deforestation dynamic in the area.

¹¹⁵ Fundação de Amparo e Desenvolvimento da Pesquisa (FADESP) (2002), "Comunidades Agroextrativistas do Rio Mapuá Breves/PA: Diagnóstico Socio-Econômico."

¹¹⁶ Fundação de Amparo e Desenvolvimento da Pesquisa (FADESP) (2002), 'Comunidades Agroextrativistas do Rio Mapuá Breves/PA, Diagnóstico Socio-Econômico'.
 ¹²⁰ Fundação de Amparo e Desenvolvimento da Pesquisa (FADESP) (2002), 'Comunidades Agroextrativistas do Rio Mapuá

Breves/PA, Diagnóstico Socio-Econômico'.

¹²¹ Herrera (2003) – Dinâmica e desenvolvimento da agricultura familiar: o caso de Vila Amélia – Breves/ Pará.

¹²² Fundação de Amparo e Desenvolvimento da Pesquisa (FADESP) (2002), 'Comunidades Agroextrativistas do Rio Mapuá - Breves/Pa, Diagnóstico Socio-Econômico'.

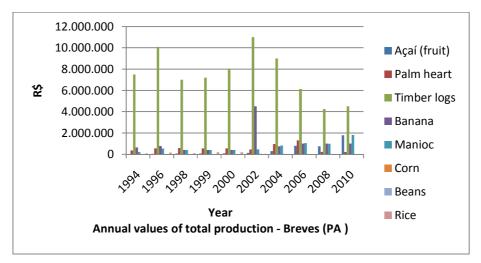
¹²³ Herrera (2003) – Dinâmica e desenvolvimento da agricultura familiar: o caso de Vila Amélia – Breves/ Pará

¹²⁴ Fundação de Amparo e Desenvolvimento da Pesquisa (FADESP) (2002), 'Comunidades Agroextrativistas do Rio Mapuá Breves/Pa, Diagnóstico Socio-Econômico'.

 ¹²⁵ Instituto Amazônia Sustentável, (2005), "Submission of proposal to Nike Mata no Peito Program." São Paulo. 32 p
 ¹²⁶ P. G. Martorano (September 2002) "Caracterização da vegetação e uso do solo das terras pertencentes à empresa Ecomapuá Conservação Ltda No Município de Breves, Pará"

²⁷ Fundação de Amparo e Desenvolvimento da Pesquisa (FADESP) (2002), 'Comunidades Agroextrativistas do Rio Mapuá Breves/Pa, Diagnóstico Socio-Econômico'

¹²⁸ CASARIM, F. et al. (WINROCK International) (2010), "Assessing the potential for generating carbon offsets in the EcoMapuá Conservação properties in the Marajó Island, Brazil". ¹²⁹ P. G. Martorano (September 2002) "Caracterização da vegetação e uso do solo das terras pertencentes à empresa


Ecomapuá Conservação Ltda No Município de Breves, Pará" ¹³⁰ Fundação de Amparo e Desenvolvimento da Pesquisa (FADESP) (2002), 'Comunidades Agroextrativistas do Rio Mapuá

Breves/PA, Diagnóstico Socio-Econômico'.

¹³⁷ Herrera (2003) – Dinâmica e desenvolvimento da agricultura familiar: o caso de Vila Amélia – Breves/ Pará v3.0

Annual values of production of agricultural and forest products in the four municipalities of the reference region¹⁴⁰

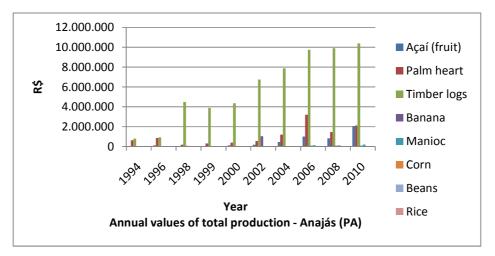


Figure 12 - Annual values of total production in the municipality of Anajás (PA)¹⁴²

¹⁴⁰ Source: IBGE Cidades: <u>http://www.ibge.gov.br/cidadesat/topwindow.htm?1</u>

¹⁴¹ Source: IBGE Cidades: <u>http://www.ibge.gov.br/cidadesat/topwindow.htm?1</u>

¹⁴² Source: Instituto Brasileiro de Geografia e Estatística (IBGE)

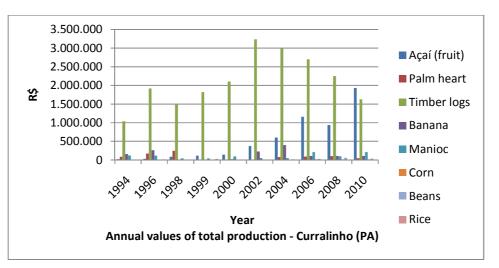


Figure 13 - Annual values of total production in the municipality of Curralinho (PA)¹⁴³

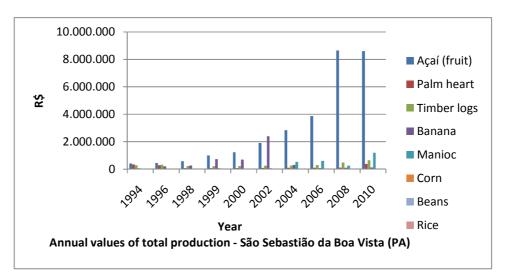


Figure 14 - Annual values of total production in the municipality of São Sebastião da Boa Vista (PA)¹⁴⁴

¹⁴³ Source: Instituto Brasileiro de Geografia e Estatística (IBGE)

¹⁴⁴ Source: Instituto Brasileiro de Geografia e Estatística (IBGE)

Figure 15 – Jangada tugboat transporting load of illegal logs¹⁴⁵

The future deforestation dynamic is expected to be affected by the planned construction of the PA-159 Pará State road, which is predicted to cut through the Lago do Jacaré property. The predicted completion date of the road is between 2011 and 2015¹⁴⁶, however it has not yet been carried out and the precise date is not known. It is important to note that the increase in economic development that comes with the construction of roads, for example in terms of power lines and increased access, will result in higher population pressure and deforestation rates in the project area¹⁴⁷. Figure 16 below shows the PA-159 road connecting the municipalities of Breves and Anajás¹⁴⁸. This map is from official sources in 2005, displaying the PA-159 road's status as "planned" (Portuguese: planejado).

¹⁴⁵ Photo: Lap Chan

¹⁴⁶ Transportation department of Pará State. Available at:

http://www.setran.pa.gov.br/PELT/carteira/arquivos/A%20Carteira%20de%20Projetos%20do%20PELT-Par%C3%A1.pdf CASARIM, F. et al. (WINROCK International) (2010), "Assessing the potential for generating carbon offsets in the EcoMapuá Conservação properties in the Marajó Island, Brazil". ¹⁴⁸ Transportation department of Pará State. Available at: http://www.setran.pa.gov.br/img/para_rodovias.pdf

VCS VERIFIED CARB®N STANDARD

PROJECT DESCRIPTION: VCS Version 3

Figure 16. Roads conditions in the Marajó island, year 2005

Description of baseline scenario adopted:

Local residents are expected to carry out unplanned deforestation, converting forest into non-forest. The scenario involves three spatially overlapping activities: firstly, extraction of commercially valuable tree species by resident families, frequently beyond levels permitted by Brazilian law¹⁴⁹, for sale to timber companies. This is accompanied by palm-heart extraction, which is both for commercial ends and for consumption or trade in kind by the harvesters themselves¹⁵⁰. The former two activities may not result in conversion of forest to non-forest, however they are integral parts of the deforestation process. Finally, slash-and-burn deforestation of the area above for subsistence agriculture, and the planting of crops^{151,152,153}.

The average annual rate of deforestation predicted in the project area over the project crediting period (2003 - 2032) is 0.17%, resulting in the deforestation of a predicted 5% of the Ecomapuá Amazon REDD project area by the end of 2032.

¹⁴⁹ Serviço Florestal Brasileiro (SFB), Instituto de Pesquisa Ambiental da Amazônia (2011), "Florestas Nativas de Produção Brasileiras".

¹⁵⁰ FADESP (2002), "Comunidades Agroextrativistas do Rio Mapuá – Breves/PA: Diagnóstico Socio-Econômico."

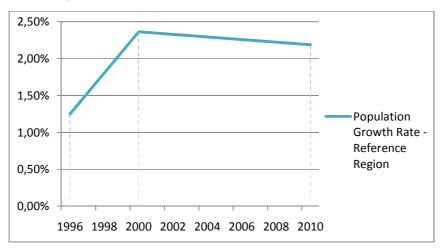
¹⁵¹ Fundação de Amparo e Desenvolvimento da Pesquisa (FADESP) (2002), "Comunidades Agroextrativistas do Rio Mapuá – Breves/PA, Diagnóstico Socio-Econômico".

¹⁵² CASARIM, F. et al. (WINROCK International) (2010), "Assessing the potential for generating carbon offsets in the EcoMapuá Conservação properties in the Marajó Island, Brazil".

¹⁵³ Martorano, P.G. (2002), "Caracterização da vegetação e uso do solo das terras pertencentes à empresa Ecompauá conservação LTDA no município de Breves, PA." Convênio Nº 518 Nova Amafruta/ FADESP / Empresa Ecomapuá Conservação Ltda.

Identification of Drivers of Deforestation

Driver Variables Explaining the Quantity of Deforestation:


As described under the "projection of the location of future deforestation" section below, a regression was carried out between currently deforested areas and future deforestation, which yielded a significant result. This was used in step 4.2 of the methodology which carried out the projection used for calculation of GHG reductions. Brazilian geography and statistics data¹⁵⁴ were used to carry out a regression analysis between the population growth and deforestation rates in the reference region over the historical reference period.

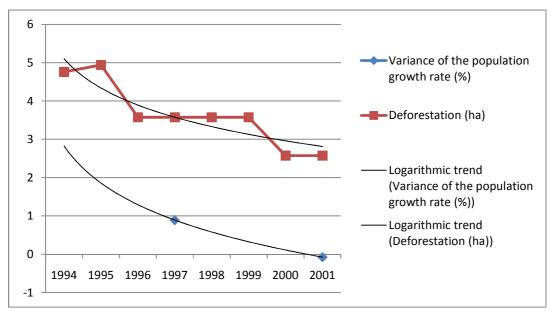
The annual averages of the population growth rate from the municipalities comprising significant proportions of the reference area were gathered. The period analyzed begins in 1994, which was the earliest year with available deforestation data from LANDSAT 5 satellite, and the end of the historical reference period determined the end year of the analysis, 2001.

Year	a) Reference region deforestation (ha)	Year	Population	b) Average annual population growth rate (%/year)
1994	57,534.52	1991	116,554	
1995	87,348.97	1996	124,015	1.25%
1999	3,750.26	2000	136,160	2.36%
2001	375.15	2010	169,062	2.19%

Table 22 – Reference region average population growth rate used to determine correlation with deforestation¹⁵⁵

As can be seen in Table 22 above, in addition to the decrease in deforestation within the reference region, a slowing down in the population growth rate from the main municipalities comprising the reference region was also verified. This is better shown in Figure 17 below. The population growth rate had increased by 89.3% from 1996 to 2000, and afterwards, it decreased 7.4% from 2000 to 2010.

Figure 17. Slowing down of the population growth rate in the reference region


Thus, a correlation between the variables was carried out. It was shown that a significant correlation between the decreasing deforestation and the slowing down population growth rate existed. The deforestation variable

¹⁵⁴ Source: Instituto Brasileiro de Geografia e Estatística (IBGE)

¹⁵⁵ Source: Instituto Brasileiro de Geografia e Estatística (IBGE)

was transformed to a log basis, and then, it was compared to the variance of the population growth rate in the same period.

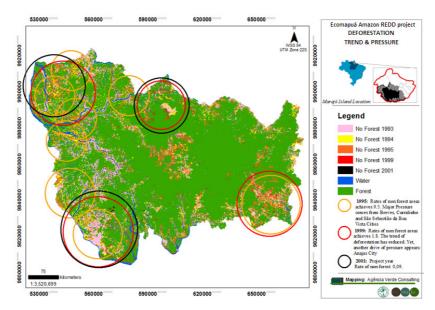
Figure 18 - Reference period trends in: deforestation; variance of the population growth rate

It was concluded from this that population is a variable which significantly predict quantity of future deforestation in a direct relationship. As described in the adopted baseline, the local residents are expected to carry out unplanned deforestation, which involves spatially overlapping activities. Therefore, as the population growth rate is expected to decrease, this variable was used in the selection of the baseline approach, described below, as it suggested that future deforestation would continue to decrease. Another important factor that contributed to the decrease in deforestation in the reference region was the transference of people to urban areas. Between the periods analyzed, the inhabitants who live in urban areas in the region increased from 27% to 42.5%. Moreover, an analysis of the human development index improvement in the municipalities covering the reference region shows a significant increase of more than 40% in the period 1991 - 2000, mainly in the income and education of the population. These can be factors that explain the decrease in the population growth rate in the region¹⁵⁶.

Driver Variables Explaining the Location of Deforestation

As explained below in "projection of future deforestation", Markov chains enabled the calculation of the probability of conversion of a pixel from "forest" to "non-forest" class. The probability of "non-forest" at time t+1 in this methodology depends upon the arrangement of cells of "forest" and "non-forest" at time t. Thus the presence of "non-forest" is a driver variable predicting quantity and location of future deforestation.

The reference region is located in one of Brazil's richest areas in terms of waterways, which historically determined the locations of settlements in relation to extraction of NTFPs and timber. To this day the waterways remain the overwhelmingly predominant means of transport and access to forest products. Furthermore, the small sawmills to which timber is taken for processing are located on riverbanks. For these reasons, the great majority of the regional population is located in small settlements on the banks of the rivers¹⁵⁷. This data from


¹⁵⁶ Projeto desenvolvimento sustentável e gestão estratégica dos territórios rurais no estado do Pará. Relatório Analítico do Território do Marajó. Belém: Universidade Federal do Pará, 2012. 79p. Available at: http://sit.mda.gov.br/download/ra/ra129.pdf.

¹⁵⁷ Grupo Executivo do Estado do Pará para o Plano Marajó (GEPLAM) (2007), "Plano De Desenvolvimento Territorial Sustentável Do Arquipélago Do Marajó."

literature, and the projection of the location of future deforestation described below, suggest that proximity to rivers is correlated to the location of deforestation.

Referring to the projection of location of future deforestation step below, the key variable used is presence of "non-forest". Non-forest itself, in turn, is related to the location of cities, as shown in Figure 19 below.

Figure 19 – Deforestation driver pressure from cities

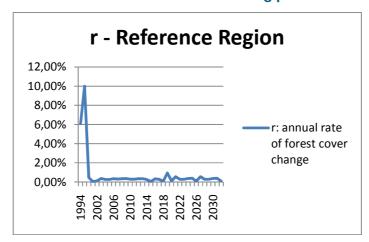
Therefore, conclusive evidence from this analysis of agents and drivers has been found that the future trend in deforestation in the project area will most likely be decreasing.

Analysis of Historical Land Use and Land Cover Change

Up until 2001 the deforestation rate was very high and therefore there is a large proportion of deforested areas in the 2001 land-use and land-cover map (Figure 23 below).

In the reference region, the 1990 – 2000 period displayed an annual average deforestation of 2.36% per year as depicted in Table 23 below (applying r: annual rate of change of forest cover¹⁵⁸, which was also used in deforestation rates below). This is approximately eight times greater than average annual deforestation from 2000 - 2010 (0.3% per year). 1995 was the year with the highest annual deforestation rate with 10%. The tendency in r in the reference region is shown in Figure 20 below.

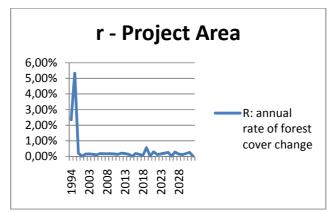
Meanwhile, in the project area, the greatest observed rate of deforestation was also 1995, the deforestation rate being 5.3% (Table 24 and Figure 21 below). Similarly to the above, comparing the decade of 1990 – 2000 (annual average 1.24%) with that of 2000 - 2010 (0.16% annual average), the deforestation rate declined by 7 times.


Year	Riparian DenseAnnualTropical Rainforestdeforestation RR(ha)(ha)		Cumulative deforestation (ha)	R: annual rate of forest cover change
1993	975,657.85			
1994	918,123.34	57,534.52	57,534.52	6.08%
1995	830,774.37	87,348.97	144,883.48	10.00%
1999	815,773.34	3,750.26	159,884.52	0.46%
2001	815,023.03	375.15	160,634.82	0.05%
2002	814,064.10	958.93	161,593.75	0.12%

¹⁵⁸ Puyravaud, J.-P. (2003), "Standardizing the calculation of the annual rate of deforestation." Forest Ecology and Management, 177: 593-596

2025 2026	755,581.01 754,915.80	2,938.37 665.21	220,076.85 220,742.05	0.39%
2024	758,519.38	2,772.56	217,138.47	0.36%
2023	761,291.95	2,135.15	214,365.91	0.28%
2022	763,427.10	2,109.50	212,230.75	0.28%
2021	765,536.60	4,313.80	210,121.25	0.56%
2020	769,850.40	745.06	205,807.45	0.10%
2019	770,595.46	7,271.74	205,062.39	0.94%
2018	777,867.20	635.50	197,790.65	0.08%
2017	778,502.70	2,234.30	197,155.15	0.29%
2016	780,737.00	2,575.30	194,920.85	0.33%
2015	783,312.30	416.16	192,345.55	0.05%
2014	783,728.46	2,118.84	191,929.39	0.27%
2013	785,847.30	2,662.80	189,810.55	0.34%
2012	788,510.10	2,791.30	187,147.75	0.35%
2011	791,301.40	2,295.50	184,356.45	0.29%
2010	793,596.90	2,332.80	182,060.95	0.29%
2009	795,929.70	2,834.70	179,728.15	0.36%
2008	798,764.40	2,763.10	176,893.45	0.35%
2007	801,527.50	2,507.30	174,130.35	0.31%
2006	804,034.80	2,749.00	171,623.05	0.34%
2005	806,783.80	2,148.20	168,874.05	0.27%
2004	808,932.00	2,205.50	166,725.85	0.27%
2003	811,137.50	2,926.60	164,520.35	0.36%

 Table 23 – Annual deforestation, cumulative deforestation and R in the reference region during historical reference and crediting periods



Year	Riparian Dense Tropical Rainforest (ha)	Annual deforestation PA (ha)	Cumulative deforestation (ha)	R: annual rate of forest cover change
1993	93,973.22			
1994	91,796.06	2,177.15	2,177.15	2.34%
1995	87,033.66	4,762.40	6,939.56	5.33%
1999	86,292.46	185.30	7,680.76	0.21%
2001	86,269.84	11.31	7,703.38	0.01%
2002	86,134.75	135.09		
2003	85,993.92	140.83	7,979.29	0.16%
2004	85,867.66	126.26		
2005	85,774.84	92.82	8,198.38	0.11%
2006	85,620.68	154.16	8,352.54	0.18%
2007	85,473.69	146.99	8,499.53	0.17%
2008	85,321.78	151.91	8,651.44	0.18%
2009	85,176.73	145.05	8,796.49	0.17%
2010	85,034.26	142.47	8,938.96	0.17%
2011	84,921.67	112.58	9,051.54	0.13%
2012	84,742.31	179.36	9,230.91	0.21%
2013	84,588.27	154.04	9,384.94	0.18%
2014	84,462.44	125.84	9,510.78	0.15%
2015	84,448.30	14.14	9,524.91	0.02%
2016	84,287.68	160.62	9,685.54	0.19%
2017	84,171.02	116.66	9,802.20	0.14%
2018	84,113.60	57.42	9,859.62	0.07%
2019	83,644.93	468.67	10,328.29	0.56%
2020	83,618.91	26.01	10,354.30	0.03%
2021	83,376.29	242.62	10,596.93	0.29%
2022	83,269.33	106.96	10,703.89	0.13%
2023	83,130.82	138.51	10,842.40	0.17%
2024	82,957.92	172.90	11,015.30	0.21%
2025	82,742.27	215.65	11,230.95	0.26%
2026	82,722.83	19.43	11,250.38	0.02%
2027	82,489.37	233.46	11,483.85	0.28%
2028	82,359.82	129.55	11,613.39	0.16%
2029	82,261.82	98.01	11,711.40	0.12%
2030	82,113.24	148.58	11,859.98	0.18%
2031	81,897.84	215.40	12,075.38	0.26%
2032	81,881.61	16.23	12,091.61	0.02%
	Average 2	002 – 2032		0.17%

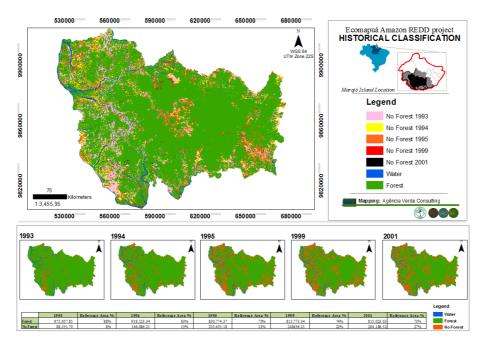

Table 24 - Annual deforestation, cumulative deforestation and R in the project area during historical reference and crediting periods

Figure 21 – "r" annual rate of forest cover change in the Project Area from 1993 – 2032

The annual deforestation of years analysed within the historical reference period are also represented in the deforestation map below (Figure 22).

Figure 22 - Deforestation map of within reference region over the historical reference period

Definition of classes of land-use and land-cover (LU/LC)

The classes of LU/LC were defined as "forest" and "non-forest" in accordance with the procedures described in section 1.10. These classes are the minimum classes to be considered in the present REDD project as stipulated by the methodology. As such, degradation was not a factor.

As described in section 1.10, stratification was not carried out in either class, and therefore the categories "forest" and "non-forest" have homogenous carbon stocks. Satellite images from 2001, chosen because of image quality, were used to generate the land-use and land-cover map at project start date shown in Figure 23, which meets methodology requirements of being within 2 years \leq of the latter date.

The LU/LC classes present in the project area, reference region and leakage belt at the project start date are listed in Table 25, which specifies whether logging, fuel wood collection or charcoal production are occurring in the baseline case.

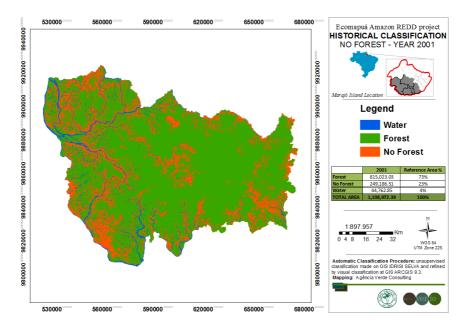


Figure 23 - Land-Use and Land-Cover Map at project start date¹⁵⁹

Cla	ss identifier	Trend in carbon stock ¹⁶⁰	Presence in	Baseline activity		ivity	Description (including criteria for unambiguous boundary definition)
Idcl	Name			LG ¹⁶¹	FW	СР	
1	Riparian (Aluvial) Dense Tropical Rainforest	decreasing	RR, PA, LK ¹⁶²	no	no	no	The categories were defined through: Analysis of the histogram of bands used, identifying its peaks and using them as a reference for grouping the most common values, associating them with the most common LU/LC types, followed by refinement through visual interpretation of the results.
2	Non forest	increasing	RR, PA, LK	no	no	no	Same as above.

Table 25 – Identification and baseline activity of all LU/LC classes at project start date within the reference region, project area and leakage belt

Definition of classes of land-use and land-cover change (LU/LC-change)

The LU/LC-change categories that could occur within the project area and leakage belt during the project crediting period, in both the baseline and project case, are identified in the potential LU/LC-change matrix (Table 26) and the list of LU/LC-change categories during the project crediting period are shown in (Table 27).

Table 26 shows that deforestation could occur in the baseline and project scenarios within both the PA and LK areas, the hectares in brackets show the quantities of deforestation observed within the historical reference period associated with each identifier. The deforestation present within the PA and LK are shown in the LU/LC-

¹⁵⁹ Year 2001 meets methodology requirements: < 2 years of project start date

¹⁶⁰ The methodology specifies: Note if "decreasing", "constant", or "increasing".

LG = Logging, FW = Fuel-wood collection; CP = Charcoal Production (yes/no).

¹⁶² RR – Reference region, LK – Leakage belt, LM – Leakage management Areas, PA – Project area.

VCS VERIFIED CARB®N STANDARD

PROJECT DESCRIPTION: VCS Version 3

change map (Figure 24). It is important to note that while the latter shows only deforestation from 1995 – 2001, Table 26 displays deforestation across the whole reference period.

As shown in table 27, degradation was not considered in any of the LU/LC classes, for reasons described at the beginning of the present section. Table 27 also shows that no classes were predicted to have growth in carbon stocks, this is because secondary forest was not considered as a category.

		Initial LU/L	-C class
SS	ldcl	Riparian (Aluvial) Dense Tropical Rainforest in the PA	Riparian (Aluvial) Dense Tropical Rainforest in the LK
Final Class	Riparian Dense Tropical Rainforest in the PA	l1/F1 (81,881.61ha) ¹⁶³	-
Ē	Riparian Dense Tropical Rainforest in the LK	-	I2/F2 (99,122.46ha)
	Non Forest in the PA	l1/F3 (4,253.14ha)	-
	Non Forest in the LK	-	I2/F4 (19,421.06ha)

Table 26 – Potential land-use and land-cover change matrix showing associated conversion levels over the historical reference period

IDct	Name	Trend in carbon stock	Presence in	Activity in the baseline case		the baseline		the baseline		ne	Name	Trend in carbon stock	Presence in	the	tivity proj case	ect
				LG	FW	СР				LG	FW	СР				
I1/F1	PA Riparian Dense Tropical Rainforest permanent	constant	PA	no	no	no	PA Riparian Dense Tropical Rainforest permanent	constant	PA	no	no	no				
I1/F3	PA Riparian Dense Tropical Rainforest converted	decreasing	PA	no	no	no	PA Riparian Dense Tropical Rainforest converted	decreasing	PA	no	no	no				
12/ F2	LK Riparian Dense Tropical Rainforest permanent	constant	LK	no	no	no	LK Riparian Dense Tropical Rainforest permanent	constant	LK	no	no	no				
12/F4	LK Riparian Dense Tropical Rainforest converted	decreasing	LK	no	no	no	LK Riparian Dense Tropical Rainforest converted	decreasing	LK	no	no	no				

Table 27 – List of LU/LC-change categories which could occur in PA and LK during project crediting period

¹⁶³ The methodology specifies: Each class shall have a unique identifier (IDcl). The notation I1, I2, etc. indicates "initial" (predeforestation) classes, which are all forest classes; and F1, F2 etc. to indicate final" (post-deforestation) classes.

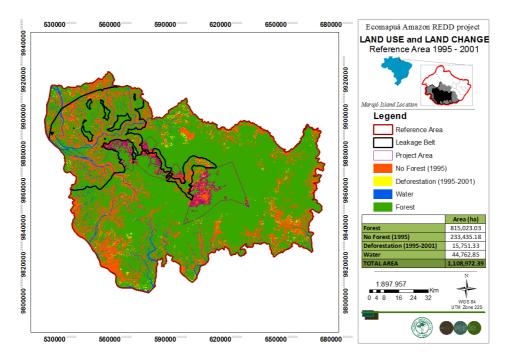


Figure 24 – (1995-2001) LU/LC-change map period in the project area and leakage belt

Projection of Future Deforestation

As the Methodology stipulates, the aim of this step is to locate in space and time the baseline deforestation in the project area, reference region and leakage belt.

The "forest" class in each of these areas contains only one stratum, because it consists of only one vegetation type as described in section 1.10, no stratification was carried out.

Selection of Baseline Approach

As shown in Figure 20 (above) a clear decreasing trend in deforestation during the historical reference period within the reference region is present. As explained earlier in section 2.4, conclusive evidence from the analysis of the deforestation dynamic was found to suggest that this trend would continue in the future.

For this reason, approach b., Time function, was adopted to create the baseline.

Regression Analysis

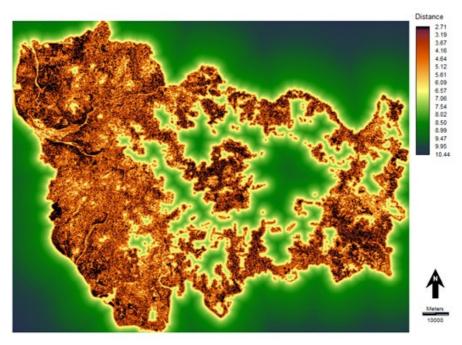
The distance to areas currently deforested was analysed as a predictor of the probability of future deforestation. Thus, the correlation between the following two variables was analysed: i) annual forest/ non-forest map and ii) the map of relative distance between non-forest from 1993 and 2001. The analysis of these variables generated data on, respectively: i) annual deforestation; and ii) difference in historical deforestation.

The variables are inter-dependent, being that the cumulative difference in deforestation is a consequence of the annual deforestation. The sample from 2001 represents the accumulated deforestation across the historical reference period, and therefore this was the input map for the data.

The regression was carried out in a GIS environment (i.e. software IDRISI Selva), and the model of best fit was found to be the non-linear logistical logit regression:

$$R = a + b \times \ln(e)$$

Where,


b = -20.881982

The results of the regression are reported below:

Variable/ Statistic name	Mean	Standard Deviation
VDTRF_NF_NATLOG_2	5.10	1.78
BORALA_Train_Flore_to_Nao	0.16	0.37
Pseudo R Square	0.60	-
Receiver Operating Characteristic (ROC) ¹⁶⁴	0.94	-

Table 28 – Results of non-linear logistical logit regression

Table 28 indicates that, the closer an area within the class "forest" is to an area of "non-forest", the higher its probability of deforestation.

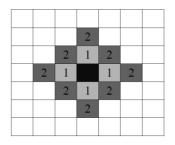
Figure 25 – Deforestation risk map of the reference region, based on distance to "non-forest"

The map above (Figure 25) illustrates the probability of forest becoming non-forest within the reference region, based on the distance to currently deforested areas, generated by the regression described above.

Projection of the quantity and location of future deforestation

Markov chains enabled the modelling of landscape dynamics based on a transition matrix¹⁶⁸. This technique simulates the landscape state at time t+1 by using the landscape state at time t and taking account of two variables, which were generated year per year: a) transition probabilities and; b) the current distribution of land states in time t. The variable a) transition probabilities – represents the probability of each pixel of a specific class to whether change or not to other class in the period analyzed. The variable b) distribution of land states in time t – represents the landscape state in time t. The Markov chains are linked to these variables, according to the formula below:

$$\Pi(t+1) = Pn \times \Pi(t)$$


Where,

 $\Pi(t+1)$ Landscape state at time t+1;

 $\Pi(t)$ Landscape state at time *t*;

Pn Transition probabilities expressing the probability of each pixel of a given class changing (or not) to another stipulated category.

In order to fix the problem of the presence of individual pixels in the landscape which did not fit with their surrounding pixels, the technique of cellular automatons was implemented¹⁶⁹, using the *ca_Markov* module of the IDRISI 17.0 Selva software environment. The module employs the following rules governing transition of neighbouring cells:

Figure 26 – Von Neumann neighbourhood rules governing pixel transition

According to Figure 26, the state of pixels of at time t+1 is determined by the transition values – which are deterministic rules – corresponding to each pixel¹⁷⁰, i.e., knowing the state of the surrounding pixels, the future state of the analyzed pixel can be predicted.

Thus, in order to project the quantity and location of future deforestation, the following sequence of functions was applied in the GIS Idrisi 17.0 environment to determine the land use scenario from 2003 - 2032: Markov chains; followed by Markov chains coupled with a cellular automata algorithm. Thus, the *ca_Markov* model combines the changing cells concept from cellular automatons with the change probability from Markov chains. According to Pereira (2011), this method provides consistent results when utilized to project the land use change¹⁷¹.

In order to simulate the scenarios, the land-use maps from 1993 and 2001 were used, as well as the maps generated by the simulation itself, corresponding to the following years: 2009; 2017 and 2025 (see Table 29).

¹⁶⁸ MOREIRA, D.A. (2007), "Pesquisa Operacional - Curso Introdutório." Thomson, 23x16x2, e.1, 356pp.

¹⁶⁹ VIDICA, P.M. (2007), "Novas abordagens na evolução de autômatos celulares aplicados ao escalonamento de tarefas em multiprocessadores." 236f: il. 2007. Dissertação (mestrado em Ciências da Computação) - Universidade Federal de Uberlândia.

¹⁷⁰ WU, F.; WEBSTER, C.J. (2000), "Simulating artificial cities in a GIS environment: urban growth under alternative regulation regimes." Int. j. Geographical Information Science, v.14, n.7, p.625-648.

¹⁷¹ PEREIRA, Gabriel Henrique de Almeida. Simulação do Crescimento das Áreas Antropizadas utilizando Cadeia de Markov e Autômata Celular em Ambiente SIG. Curitiba: Universidade Federal do Paraná, 2011. Available at: http://www.egal2011.geo.una.ac.cr/index.php?option-com remository&Itemid=180&func=fileinfo&id=129>.

1993 and 2001 were the maps previously generated through unsupervised classification and subsequent visual refinement as described in section 1.10 "image classification". These maps were in *.tiff* format and contained the previously defined LU/LC classes, namely "forest" and "non-forest". In this way, the simulation was based on the LU/LC maps previously generated.

Input Year 1	Input Year 2	Number of iterations	Year simulated
1993	2001	1	2002
1993	2001	2	2003
1993	2001	3	2004
1993	2001	4	2005
1993	2001	5	2006
1993	2001	6	2007
1993	2001	7	2008
1993	2001	8	2009
2001	2009	1	2010
2001	2009	2	2011
2001	2009	3	2012
2001	2009	4	2013
2001	2009	5	2014
2001	2009	6	2015
2001	2009	7	2016
2001	2009	8	2017
2009	2017	1	2018
2009	2017	2	2019
2009	2017	3	2020
2009	2017	4	2021
2009	2017	5	2022
2009	2017	6	2023
2009	2017	7	2024
2009	2017	8	2025
2017	2025	1	2026
2017	2025	2	2027
2017	2025	3	2028
2017	2025	4	2029
2017	2025	5	2030
2017	2025	6	2031
2017	2025	7	2032

Table 29 – Input maps, iterations and simulated year created by Markov chain and cellular automata procedures

The pixel dimension used was 30 x 30m, determined by the LANDSAT image resolution. The interval between the two input maps for the Markov module was 9 years.

The output of the latter module was:

- A matrix of transition probability expressing the probability of each pixel of a given class changing (or not) to another stipulated category;
- A matrix of transition areas expressing the total area in pixels for the determined study period; and
- A group of conditional probability images, that is, images that represent the probability of each pixel of the study area falling into each of the defined categories in the future.

The following step was to apply the 5 x 5 cellular automata Standard contiguity filter, which follows the Kernel filter. The goal of this filter is to match the pixels to the defined classes. The output of that module is the simulated LU/LC scenario.

Selection of most accurate deforestation risk map

In order to select the most accurate deforestation risk map, "calibration" of the output of the previous step was carried out. In order to do this, two LU/LC maps generated from satellite images should be used to simulate a "future map" corresponding to a scenario which is already known, in this way it is possible to calibrate the model for future simulations¹⁷². The maps from years 1995, 1999 and 2001 were used as the maps to be simulated, as the LU/LC maps corresponding to these years had already been created, as previously described. The Kappa correspondence index in the Idrisi 17.0 software was used for in order to carry out this comparison.

Map accuracy assessment

The comparison of difference between the "real" scenario and the scenarios generated by the classifications was carried out using Kappa statistics, found in the "Crosstab" module of the Idrisi 17.0 Selva software. Specifically, the equation below was used.

$$ICK_{global} = \frac{N\sum_{i=1}^{c} x_{ii} - \sum_{i=1}^{c} x_{i+} x_{i+}}{N^2 - \sum_{i=1}^{r} x_{i+} x_{i+}}$$

Where:

K: Kappa index of agreement

N: Number of total observations (e.g. pixels)

c: Number of classes analysed (matrix c x c)

i: number of the column or row (representing the class being analysed)

 x_{ii} : Number of observations of the classes in the diagonal of the matrix

$$x_{i+} = \sum_{j} x_{ij}$$

: sum of the values of row i (totals row)

$$x_{+i} = \sum_{i} x_{ji}$$

: sum of the values of column i (totals column)

¹⁷² KAMUSOKO, C. *et al.*(2009), "Rural sustainability under threat in Zimbabwe - Simulation of future land use/cover changes in the Bindura district based on the Markov-cellular automata model." *Applied Geography*, v.29, p.435-447.

VCS VERIFIED CARB®N STANDARD

PROJECT DESCRIPTION: VCS Version 3

The "real" scenario had the reference region as the matrix, which was combined with the maps of waterways as previously described, as well as with the deforestation data from 1976, 1987, 1991, 2000 and 2001, sourced from the Brazilian MMA¹⁷³. These data were compiled in such a way that 2001 was the map closest to the "real" scenario. Therefore, areas of the reference region not classified as deforestation or bodies of water were considered "forest". Using the 2001 map as a reference, the Kappa index was calculated for each year simulated for the Project. This same process was carried out for the classification maps which were visually refined.

The results of the above process are shown in Table 30 below, which specifically show the values of the Kappa calculation for maps from all years, when compared with the "real" 2001 scenario. Initially, a low correspondence level between the 2001 scenario and the various years mapped was found, which was judged to be due to high cloud-cover, making the classification process difficult.

	1994	1995	1999	2001	2001 Scenar	rio
1993	0.2491	0.2750	0.2780	0.2969	0.2259	
1994		0.2673	0.1689	0.3395	0.2246	
1995			0.2245	0.3563	0.2562	
1999				0.2672	0.1549	
2001					0.2768	

 Table 30 – Values found by the Kappa index by comparing two maps created through unsupervised classification

After the refinement, which happened post unsupervised classification, as described under "image classification" above, the maps were again compared using the Kappa index. It was observed that, the nearer the years being compared were to each other, the greater the similarity between them, showing the mapping of the time series was correct. This time, the maps showed much greater similarity when compared with the reference point of 2001, however the values remain largely below 50%. This is most likely due to a discrepancy between the scales used during the classification process:

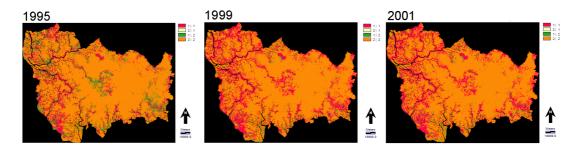
- Scale used in mapping of the present PD: 1: 10,000
- Scale used for mapping by PRODES¹⁷⁴ : 10: 250,0000

The persisting somewhat low similarity level shown in Table 30, was attributed to two main factors: the large scale used by PRODES, which engenders the generation of large number of polygons; and PRODES's use of different satellites other than LANDSAT in high cloud conditions.

Given the circumstances explained above, the post-refinement average similarity value of 0.38 (Table 31) were considered satisfactory.

	1994	1995	1999	2001	2001 Scenario
1993	0.8001	0.5947	0.5672	0.5659	0.3511
1994		0.7749	0.7432	0.7416	0.3842
1995			0.9661	0.9644	0.3511
1999		_		0.9983	0.4037
2001					0.4034

 Table 31 - Values found by the Kappa index by comparing two maps created through refinement, post-unsupervised classification


¹⁷³ Ministério do Meio Ambiente (MMA): <u>http://mapas.mma.gov.br/i3geo/datadownload.htm</u>

¹⁷⁴ PRODES weblink: http://www.dpi.inpe.br/prodesdigital/prodes.php

The calibration, as described, was carried out through comparison of maps from 1995, 1999 and 2001, with the projection of these same years. The map from 1995 showed a similarity of 71% while 1999 and 2001 both showed 93%. These values were considered highly satisfactory, given that the first three years of the historical reference period, were those showing the highest deforestation rates, which makes the fidelity of the projection challenging.

Beyond the Kappa index, the difference between the years was also checked via the spatial analysis of difference shown in Figure 27. The "non-forest" and "forest" classes were represented by the numbers 1 and 2, respectively, the latter class being predominant in the landscape. Through this analysis, the coherence between the maps was confirmed.

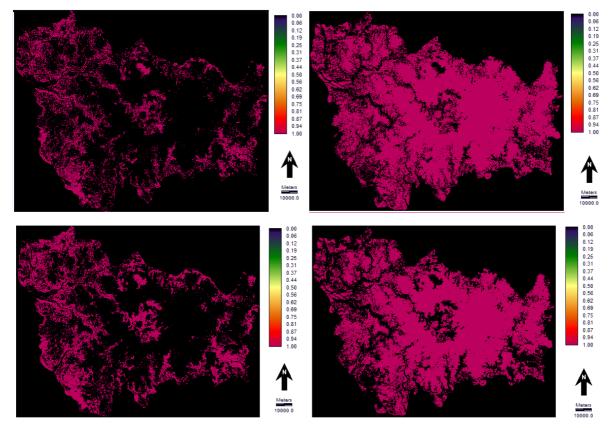
Figure 27 – spatial analysis of coincidence of LU/LC classes in the three years used for calibration. The "non-forest" and "forest" classes were represented by the numbers 1 and 2, respectively

The goal of the above procedures was the simulation of the location of deforestation within the reference region across the project crediting period. This was achieved by applying the Markov chains, generating a probabilities matrix of change from one land-use to another (Table 32), a matrix representing transition from "forest" to "non-forest" in pixels (Table 33) and images of Markovian conditional probabilities (Figure 28)

	2002									
		Non-Forest	Forest	Total						
2032	Non-Forest	23.68%	6.83%	30.52%						
2032	Forest	0%	69.48%	69.48%						
	Total	23.68%	76.32%	100%						

Table 32 – Transition probability matrix from "forest" to "non-forest" from 2002 to 2032

	2002					
		Non-Forest	Forest	Total		
2032	Non-Forest	2,800,229	808,073	3,608,302		
2032	Forest	0	8,216,137	8,216,137		
	Total	2,800,229	9,024,210	11,824,439		


Table 33 - Matrix representing transition from "forest" to "non-forest" in pixels

According to the transition probability matrix (Table 32), there is 0 probability of forest regeneration from 2002 to 2032, being that all transition probability represented deforestation. The same can be confirmed in the matrix of transition (Table 33) in which no pixels moved from the category "non forest" to "forest".

Based on the Markovian conditional probability maps (Figure 28), it is possible to visualize the spatial information and conduct analyses of the probability of a given land-use being present in a given location at a given year. As only two LU/LC classes were considered, and the input maps (1995 and 2001) showed constant annual

deforestation rates, the conditional probability images were exhibited in a binary format, in which there is either 100% or 0% chance of forest being present in a given location, given that there were no other land-uses to undergo change.

The Markovian conditional probability maps enabled the premise of expansion towards "non-forest" areas to be confirmed, that is, the more a region is deforested, the greater the probability of deforestation of adjacent areas. Therefore, following the patterns of anthropic pressure within the reference region, deforestation tends to occur at a constant rate, concentrating along the banks of bodies of water.

Figure 28 – Markovian conditional probability maps showing (above), conditional probabilities of being: (left) non-forest in 2002; and (right) forest in 2002; and (below): (left) probability of being "non-forest" in 2032; and (right) probability of being "forest" in 2032

An analysis of the projection of future deforestation across the project crediting period was subsequently carried out, using the Kappa index once again. This demonstrated that only 18% of the landscape underwent change from 2002 to 2032. It was observed that the annual rates of change were practically constant from year to year. When the LU/LC-change was analysed at ten year intervals, it was observed that the rate was approximately 8%, always being a transition from "forest" to "non-forest".

In accordance with the location analysis, achieved through the regression procedure described above, the quantity of baseline LU/LC-change was projected throughout the crediting period, in the reference region, project area, and leakage belt in each stratum. This is in accordance with step 5 of the Methodology - Definition of The Land-Use and Land-Cover Change Component of The Baseline. The baseline deforestation within the reference region per stratum is provided in Table 34 below. The only "forest" stratum used consisted of riparian dense tropical rainforest, which is represented by statum i:

Ducient	Stratum i in the reference region (ha)	Tota	l (ha)
Project year t	ABSLRR ¹⁷⁵ i,t	Annual ABSLRR t	Cumulative ABSLRR
2003	2,926.60	2,926.60	2,926.60
2004	2,205.50	2,205.50	5,132.10
2005	2,148.20	2,148.20	7,280.30
2006	2,749.00	2,749.00	10,029.30
2007	2,507.30	2,507.30	12,536.60
2008	2,763.10	2,763.10	15,299.70
2009	2,834.70	2,834.70	18,134.40
2010	2,332.80	2,332.80	20,467.20
2011	2,295.50	2,295.50	22,762.70
2012	2,791.30	2,791.30	25,554.00
2013	2,662.80	2,662.80	28,216.80
2014	2,118.84	2,118.84	30,335.64
2015	416.16	416.16	30,751.80
2016	2,575.30	2,575.30	33,327.10
2017	2,234.30	2,234.30	35,561.40
2018	635.50	635.50	36,196.90
2019	7,271.74	7,271.74	43,468.64
2020	745.06	745.06	44,213.70
2021	4,313.80	4,313.80	48,527.50
2022	2,109.50	2,109.50	50,637.00
2023	2,135.15	2,135.15	52,772.15
2024	2,772.56	2,772.56	55,544.72
2025	2,938.37	2,938.37	58,483.09
2026	665.21	665.21	59,148.30
2027	4,224.63	4,224.63	63,372.93
2028	2,114.12	2,114.12	65,487.06
2029	2,064.09	2,064.09	67,551.14
2030	2,659.91	2,659.91	70,211.05
2031	2,988.35	2,988.35	73,199.40
2032	586.90	586.90	73,786.30

Table 34 – Annual areas of baseline deforestation in the reference region across the project crediting period

Table 35 below shows the projected annual deforestation in the sole stratum of "forest" in the project area across the project crediting period, represented by the variable *ABSLPA*.

¹⁷⁵ Annual area of baseline deforestation in stratum *i* within the reference region at year t.

	Stratum i in project area (ha)	Tota	ıl (ha)
Project year t	ABSLPAi,t ¹⁷⁶	Annual ABSLPAt	Cumulative ABSLPA
2003	140.83	140.83	140.83
2004	126.26	126.26	267.09
2005	92.82	92.82	359.91
2006	154.16	154.16	514.07
2007	146.99	146.99	661.06
2008	151.91	151.91	812.97
2009	145.05	145.05	958.02
2010	142.47	142.47	1,100.49
2011	112.58	112.58	1,213.08
2012	179.36	179.36	1,392.44
2013	154.04	154.04 1,546.4	
2014	125.84	125.84	1,672.31
2015	14.14	14.14	1,686.45
2016	160.62	160.62	1,847.07
2017	116.66	116.66	1,963.73
2018	57.42	57.42	2,021.15
2019	468.67	468.67	2,489.82
2020	26.01	26.01	2,515.84
2021	242.62	242.62	2,758.46
2022	106.96	106.96	2,865.42
2023	138.51	138.51	3,003.93
2024	172.90	172.90	3,176.83
2025	215.65	215.65	3,392.48
2026	19.43 19.43		3,411.92
2027	233.46	233.46	3,645.38
2028	129.55	129.55	3,774.93
2029	98.01	98.01	3,872.93
2030	148.58	148.58	4,021.51
2031	215.40	215.40	4,236.91
2032	16.23	16.23	4,253.14

Table 35 – Annual areas of baseline deforestation in the project area

Table 36 below shows the projected annual deforestation in the sole stratum of "forest" in the leakage belt across the project crediting period, represented by the variable *ABSLLK*.

¹⁷⁶ Annual area of baseline deforestation in stratum i within the project area at year t

.	Stratum i in the leakage belt (ha)	Tot	al (ha)
Project year t	ABSLLK _{i,t} ¹⁷⁷	Annual ABSLLK _t	Cumulative ABSLLK
2003	769.25	769.25	769.25
2004	586.75	586.75	1,356.00
2005	569.13	569.13	1,925.13
2006	722.48	722.48	2,647.61
2007	650.05	650.05	3,297.66
2008	722.84	722.84	4,020.51
2009	782.64	782.64	4,803.15
2010	550.40	550.40	5,353.55
2011	635.31	635.31	5,988.85
2012	702.74	702.74	6,691.60
2013	617.78	617.78	7,309.38
2014	538.47	538.47	7,847.84
2015	153.73	153.73	8,001.57
2016	685.52	685.52	8,687.09
2017	582.55	582.55	9,269.64
2018	113.17	113.17	9,382.81
2019	1,838.13	1,838.13	11,220.94
2020	255.50	255.50	11,476.44
2021	1,117.90	1,117.90	12,594.34
2022	502.09	502.09	13,096.43
2023	622.29	622.29	13,718.72
2024	717.39	717.39	14,436.11
2025	775.39	775.39	15,211.49
2026	240.43	240.43	15,451.92
2027	1,036.36	1,036.36	16,488.28
2028	603.15	603.15	17,091.43
2029	550.90	550.90	17,642.33
2030	708.11	708.11	18,350.44
2031	860.22	860.22	19,210.66
2032	210.40	210.40	19,421.06

Table 36 - Annual areas of baseline deforestation in the leakage belt

Calculation of baseline activity data per forest class

The following is in accordance with step 5.1 of the Methodology: "Calculation of baseline activity data per forest class", in which it is stipulated that the previously-created maps of annual baseline deforestation and LU/LC map be combined, producing a map showing deforestation per class in the baseline case. The number of hectares deforested in each forest class, within the reference region, project area and leakage belt are found in tables 37 - 39 below.

 $[\]frac{177}{\sqrt{3.0}}$ Annual area of baseline deforestation in stratum i within the Leakage Belt at year t $\frac{1}{\sqrt{3.0}}$

According to the baseline projections of the present project, accumulated deforestation from 2002 – 2032 in the Ecomapuá Amazon REDD project area will sum to 4,253.14ha (Table 38 below). The LU/LC-change within the project crediting period, caused by baseline deforestation, consisted of the initial class of riparian dense tropical rainforest being converted to the final LU/LC class of "non-forest".

	ed per forest class <i>icl</i> reference region		eforestation in the ce region
Idicl	1		
Name	Riparian (Aluvial) Dense Tropical Rainforest	Annual ABSLRRt (ha)	ABSLRRt cumulative (ha)
Project year t	ha		
2003	2,926.60	2,926.60	2,926.60
2004	2,205.50	2,205.50	5,132.10
2005	2,148.20	2,148.20	7,280.30
2006	2,749.00	2,749.00	10,029.30
2007	2,507.30	2,507.30	12,536.60
2008	2,763.10	2,763.10	15,299.70
2009	2,834.70	2,834.70	18,134.40
2010	2,332.80	2,332.80	20,467.20
2011	2,295.50	2,295.50	22,762.70
2012	2,791.30	2,791.30	25,554.00
2013	2,662.80	2,662.80	28,216.80
2014	2,118.84	2,118.84	30,335.64
2015	416.16	416.16	30,751.80
2016	2,575.30	2,575.30	33,327.10
2017	2,234.30	2,234.30	35,561.40
2018	635.50	635.50	36,196.90
2019	7,271.74	7,271.74	43,468.64
2020	745.06	745.06	44,213.70
2021	4,313.80	4,313.80	48,527.50
2022	2,109.50	2,109.50	50,637.00
2023	2,135.15	2,135.15	52,772.15
2024	2,772.56	2,772.56	55,544.72
2025	2,938.37	2,938.37	58,483.09
2026	665.21	665.21	59,148.30
2027	4,224.63	4,224.63	63,372.93
2028	2,114.12	2,114.12	65,487.06
2029	2,064.09	2,064.09	67,551.14
2030	2,659.91	2,659.91	70,211.05
2031	2,988.35	2,988.35	73,199.40
2032	586.90	586.90	73,786.30

Table 37 – Annual areas deforested per forest class icl within the reference region in the baseline case (baseline activity data per forest class)

	eforested per forest within the project area	Total baseline deforestation in th project area		
IDicl	1			
Name	Riparian (Aluvial) Dense Tropical Rainforest	Annual ABSLPAt (ha)	ABSLPAt cumulative (ha)	
Project year <i>t</i>	(ha)			
2003	140.83	140.83	140.83	
2004	126.26	126.26	267.09	
2005	92.82	92.82	359.91	
2006	154.16	154.16	514.07	
2007	146.99	146.99	661.06	
2008	151.91	151.91	812.97	
2009	145.05	145.05	958.02	
2010	142.47	142.47	1,100.49	
2011	112.58	112.58	1,213.08	
2012	179.36	179.36	1,392.44	
2013	154.04	154.04	1,546.48	
2014	125.84	125.84	1,672.31	
2015	14.14	14.14	1,686.45	
2016	160.62	160.62	1,847.07	
2017	116.66	116.66	1,963.73	
2018	57.42	57.42	2,021.15	
2019	468.67	468.67	2,489.82	
2020	26.01	26.01	2,515.84	
2021	242.62	242.62	2,758.46	
2022	106.96	106.96	2,865.42	
2023	138.51	138.51	3,003.93	
2024	172.90	172.90	3,176.83	
2025	215.65	215.65	3,392.48	
2026	19.43	19.43	3,411.92	
2027	233.46	233.46	3,645.38	
2028	129.55	129.55	3,774.93	
2029	98.01	98.01	3,872.93	
2030	148.58	148.58	4,021.51	
2031	215.40	215.40	4,236.91	
2032	16.23	16.23	4,253.14	

Table 38 – Annual areas deforested per forest class icl within the project area in the baseline case (baseline activity data per forest class)

VCS VERIFIED CARB®N STANDARD

	Area deforested per forest class icl within the leakage belt		e deforestation in Ikage belt
IDicl	1		
Name	Riparian (Aluvial) Dense Tropical Rainforest	Annual ABSLLKt (ha)	ABSLLKt cumulative (ha)
Project year	ha		
2003	769.25	769.25	769.25
2004	586.75	586.75	1,356.00
2005	569.13	569.13	1,925.13
2006	722.48	722.48	2,647.61
2007	650.05	650.05	3,297.66
2008	722.84	722.84	4,020.51
2009	782.64	782.64	4,803.15
2010	550.40	550.40	5,353.55
2011	635.31	635.31	5,988.85
2012	702.74	702.74	6,691.60
2013	617.78	617.78	7,309.38
2014	538.47	538.47	7,847.84
2015	153.73	153.73	8,001.57
2016	685.52	685.52	8,687.09
2017	582.55	582.55	9,269.64
2018	113.17	113.17	9,382.81
2019	1,838.13	1,838.13	11,220.94
2020	255.50	255.50	11,476.44
2021	1,117.90	1,117.90	12,594.34
2022	502.09	502.09	13,096.43
2023	622.29	622.29	13,718.72
2024	717.39	717.39	14,436.11
2025	775.39	775.39	15,211.49
2026	240.43	240.43	15,451.92
2027	1,036.36	1,036.36	16,488.28
2028	603.15	603.15	17,091.43
2029	550.90	550.90	17,642.33
2030	708.11	708.11	18,350.44
2031	860.22	860.22	19,210.66
2032	210.40	210.40	19,421.06

Table 39 – Annual areas deforested per forest class icl within the leakage belt in the baseline case (baseline activity data per forest class)

Calculation of baseline activity data per post-deforestation forest class

The following is in accordance with step 5.2 of the Methodology: "Calculation of baseline activity data per postdeforestation forest class." As all of the initial classes represented in the tables above were transformed into

non-forest (final post-deforestation class) in the considered baseline, the annual values corresponding to the final classes are the same as those as the initial class in tables 40 - 42 below, which depict baseline activity data per post-deforestation forest class in the reference region, project area, and leakage belt, respectively.

The maps of annually deforested areas per class across the project crediting period in the project scenario are also shown in figures 29 - 31 below, which correspond to values in tables 40 to 42.

Area established a per zone within the			leforestation in the nce region
ID <i>ct</i>	2	ABSLRRt	ABSLRRt
Name	Non forest	annual	cumulative
Project year	ha	ha	ha
2003	2,926.60	2,926.60	2,926.60
2004	2,205.50	2,205.50	5,132.10
2005	2,148.20	2,148.20	7,280.30
2006	2,749.00	2,749.00	10,029.30
2007	2,507.30	2,507.30	12,536.60
2008	2,763.10	2,763.10	15,299.70
2009	2,834.70	2,834.70	18,134.40
2010	2,332.80	2,332.80	20,467.20
2011	2,295.50	2,295.50	22,762.70
2012	2,791.30	2,791.30	25,554.00
2013	2,662.80	2,662.80	28,216.80
2014	2,118.84	2,118.84	30,335.64
2015	416.16	416.16	30,751.80
2016	2,575.30	2,575.30	33,327.10
2017	2,234.30	2,234.30	35,561.40
2018	635.50	635.50	36,196.90
2019	7,271.74	7,271.74	43,468.64
2020	745.06	745.06	44,213.70
2021	4,313.80	4,313.80	48,527.50
2022	2,109.50	2,109.50	50,637.00
2023	2,135.15	2,135.15	52,772.15
2024	2,772.56	2,772.56	55,544.72
2025	2,938.37	2,938.37	58,483.09
2026	665.21	665.21	59,148.30
2027	4,224.63	4,224.63	63,372.93
2028	2,114.12	2,114.12	65,487.06
2029	2,064.09	2,064.09	67,551.14
2030	2,659.91	2,659.91	70,211.05
2031	2,988.35	2,988.35	73,199.40
2032	586.90	586.90	73,786.30

 Table 40 – Annual areas deforested in each zone within the reference region in the baseline case (baseline activity data zone)

Area established af per zone within th			e deforestation in oject area
ID <i>ct</i>	2	ABSLPAt	ABSLPAt
Name	Non forest	annual	cumulative
Project year	ha	ha	ha
2003	140.83	140.83	140.83
2004	126.26	126.26	267.09
2005	92.82	92.82	359.91
2006	154.16	154.16	514.07
2007	146.99	146.99	661.06
2008	151.91	151.91	812.97
2009	145.05	145.05	958.02
2010	142.47	142.47	1,100.49
2011	112.58	112.58	1,213.08
2012	179.36	179.36	1,392.44
2013	154.04	154.04	1,546.48
2014	125.84	125.84	1,672.31
2015	14.14	14.14	1,686.45
2016	160.62	160.62	1,847.07
2017	116.66	116.66	1,963.73
2018	57.42	57.42	2,021.15
2019	468.67	468.67	2,489.82
2020	26.01	26.01	2,515.84
2021	242.62	242.62	2,758.46
2022	106.96	106.96	2,865.42
2023	138.51	138.51	3,003.93
2024	172.90	172.90	3,176.83
2025	215.65	215.65	3,392.48
2026	19.43	19.43	3,411.92
2027	233.46	233.46	3,645.38
2028	129.55	129.55	3,774.93
2029	98.01	98.01	3,872.93
2030	148.58	148.58	4,021.51
2031	215.40	215.40	4,236.91
2032	16.23	16.23	4,253.14

 Table 41 - Annual areas deforested in each zone within the project area in the baseline case

 (baseline activity data zone)

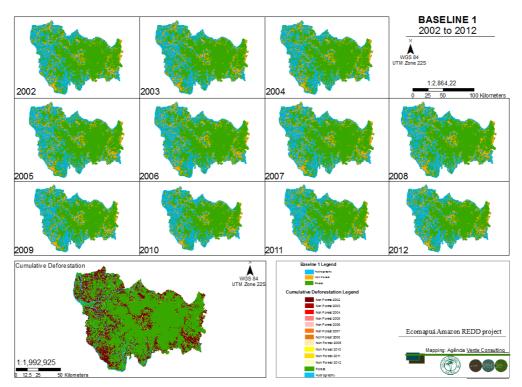
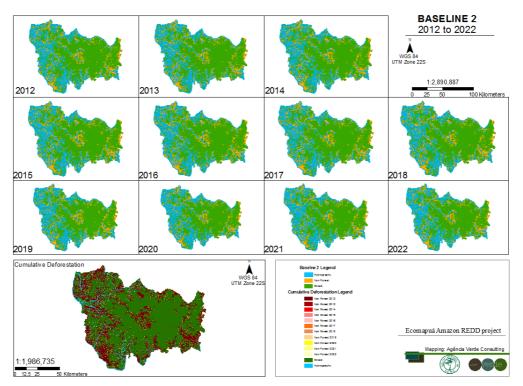

	Area established after deforestation per zone within the leakage belt		leforestation in the age belt
IDct	2	ABSLLKt	ABSLLKt
Name	Non forest	annual	cumulative
Project year	ha	ha	ha
2003	769.25	769.25	769.25
2004	586.75	586.75	1,356.00
2005	569.13	569.13	1,925.13
2006	722.48	722.48	2,647.61
2007	650.05	650.05	3,297.66
2008	722.84	722.84	4,020.51
2009	782.64	782.64	4,803.15
2010	550.40	550.40	5,353.55
2011	635.31	635.31	5,988.85
2012	702.74	702.74	6,691.60
2013	617.78	617.78	7,309.38
2014	538.47	538.47	7,847.84
2015	153.73	153.73	8,001.57
2016	685.52	685.52	8,687.09
2017	582.55	582.55	9,269.64
2018	113.17	113.17	9,382.81
2019	1,838.13	1,838.13	11,220.94
2020	255.50	255.50	11,476.44
2021	1,117.90	1,117.90	12,594.34
2022	502.09	502.09	13,096.43
2023	622.29	622.29	13,718.72
2024	717.39	717.39	14,436.11
2025	775.39	775.39	15,211.49
2026	240.43	240.43	15,451.92
2027	1,036.36	1,036.36	16,488.28
2028	603.15	603.15	17,091.43
2029	550.90	550.90	17,642.33
2030	708.11	708.11	18,350.44
2031	860.22	860.22	19,210.66
2032	210.40	210.40	19,421.06

 Table 42 – Annual areas deforested in each zone within the leakage belt in the baseline case


 (baseline activity data per zone)

VCS VERIFIED CARB®N STANDARD

PROJECT DESCRIPTION: VCS Version 3

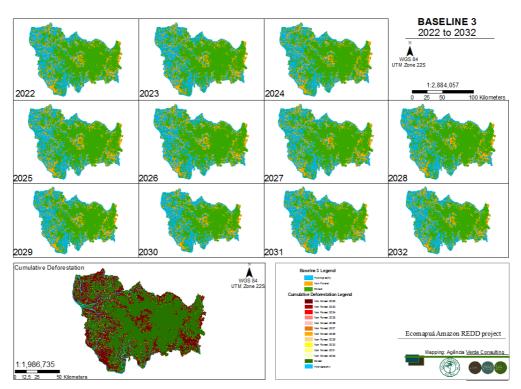

Figure 29 - Maps of baseline deforestation, annual projections in the first fixed baseline period, and cumulative deforestation at the end of the first fixed baseline period

Figure 30 - Maps of baseline deforestation, annual projections in the second baseline period, and cumulative deforestation at the end of the second fixed baseline period

VCS VERIFIED CARB®N STANDARD

PROJECT DESCRIPTION: VCS Version 3

Figure 31 - Maps of baseline deforestation, annual projections in the third baseline period, and cumulative deforestation at the end of the project crediting period

ESTIMATION OF BASELINE CARBON STOCK CHANGES AND NON-CO2 EMISSIONS

The following is in accordance with step 6 of the methodology, specifically, 6.1.1 Estimation of the average carbon stocks of each LU/LC class, the goal of which is to finalize the baseline assessment by calculating the baseline carbon stock changes.

Thus the Carbon stocks per hectare of initial forest classes *icl* existing in the project area and leakage belt are found in tables 43 - 44 below. To conclude this step, the area-weighted average carbon stocks of the post-deforestation LU/LC classes existing within each zone are displayed in table 45.

			Initial cla	SS			
ar		Name	Riparian Do	ense Tropic	al Rainforest		
Project year		IDcl		1			
ject		Average	e carbon stock pe	90% CI			
Pro	Cab <i>ic</i>		Cbbicl		Ctoti	cl	
	C stock	±90%	C stock	±90%	C stock	±90%	
	100 0		+CO a	tCO ₂ e/h	+00 -		
0000	tCO2e 77,273.69	tCO ₂ e/ha 548.72	tCO₂e 15,878.15	a 112.75	tCO₂e 93,151.84	tCO₂e/ha 661.47	
2003	69,282.49	548.72	14,236.13	112.75	83,518.62	661.47	
2004	50,932.73	548.72	10,465.63	112.75	61,398.36	661.47	
2005	84,590.85	548.72	17,381.68	112.75	101,972.53	661.47	
2006	80,654.54	548.72	16,572.85	112.75	97,227.39	661.47	
2007 2008	83,355.71	548.72	17,127.89	112.75	100,483.60	661.47	
	79,593.43	548.72	16,354.81	112.75	95,948.24	661.47	
2009	78,175.00	548.72	16,063.36	112.75	94,238.35	661.47	
2010 2011	61,776.99	548.72	12,693.90	112.75	74,470.89	661.47	
2011	98,419.11	548.72	20,223.10	112.75	118,642.21	661.47	
2012	84,522.45	548.72	17,367.63	112.75	101,890.08	661.47	
2013	69,048.35	548.72	14,188.02	112.75	83,236.37	661.47	
2014	7,757.06	548.72	1,593.92	112.75	9,350.98	661.47	
2015	88,136.72	548.72	18,110.29	112.75	106,247.01	661.47	
2010	64,014.26	548.72	13,153.61	112.75	77,167.87	661.47	
2018	31,507.50	548.72	6,474.14	112.75	37,981.64	661.47	
2019	257,165.91	548.72	52,842.31	112.75	310,008.22	661.47	
2020	14,273.84	548.72	2,932.98	112.75	17,206.83	661.47	
2021	133,132.28	548.72	27,355.95	112.75	160,488.23	661.47	
2022	58,693.11	548.72	12,060.23	112.75	70,753.34	661.47	
2023	76,002.17	548.72	15,616.89	112.75	91,619.06	661.47	
2024	94,872.56	548.72	19,494.36	112.75	114,366.92	661.47	
2025	118,331.22	548.72	24,314.63	112.75	142,645.85	661.47	
2026	10,663.96	548.72	2,191.22	112.75	12,855.18	661.47	
2027	128,104.38	548.72	26,322.82	112.75	154,427.20	661.47	
2028	71,084.14	548.72	14,606.33	112.75	85,690.47	661.47	
2029	53,777.92	548.72	11,050.26	112.75	64,828.18	661.47	
2030	81,529.61	548.72	16,752.66	112.75	98,282.27	661.47	
2031	118,190.86	548.72	24,285.79	112.75	142,476.65	661.47	
2032	8,906.09	548.72	1,830.02	112.75	10,736.11	661.47	

Table 43 – Carbon stocks per hectare of initial forest classes (icl) existing in the project area

	Initial class							
L		Name	Riparia	n Dense Tropical I	Rainforest			
yea		IDcl		1				
ect		Avera	ge carbon sto	ge carbon stock per hectare +- 90% Cl				
Project year	C	ab <i>icl</i>	C	Cbb <i>icl</i>	C	tot <i>icl</i>		
Е.	C stock	±90%	C stock	±90%	C stock	±90%		
	tCO ₂ e	tCO ₂ e/ha	tCO ₂ e	tCO ₂ e/ha	tCO ₂ e	tCO ₂ e/ha		
2003	422,098.60	548.72	86,732.59	112.75	508,831.19	661.47		
2004	321,961.16	548.72	66,156.40	112.75	388,117.56	661.47		
2005	312,290.17	548.72	64,169.21	112.75	376,459.39	661.47		
2006	396,439.04	548.72	81,460.08	112.75	477,899.12	661.47		
2007	356,693.37	548.72	73,293.16	112.75	429,986.53	661.47		
2008	396,636.13	548.72	81,500.58	112.75	478,136.71	661.47		
2009	429,447.90	548.72	88,242.72	112.75	517,690.62	661.47		
2010	302,014.12	548.72	62,057.70	112.75	364,071.82	661.47		
2011	348,603.67	548.72	71,630.89	112.75	420,234.56	661.47		
2012	385,606.52	548.72	79,234.22	112.75	464,840.74	661.47		
2013	338,985.41	548.72	69,654.54	112.75	408,639.95	661.47		
2014	295,466.73	548.72	60,712.34	112.75	356,179.07	661.47		
2015	84,354.21	548.72	17,333.06	112.75	101,687.27	661.47		
2016	376,155.70	548.72	77,292.27	112.75	453,447.96	661.47		
2017	319,655.45	548.72	65,682.63	112.75	385,338.07	661.47		
2018	62,096.75	548.72	12,759.61	112.75	74,856.35	661.47		
2019	1,008,611.01	548.72	207,248.84	112.75	1,215,859.85	661.47		
2020	140,198.94	548.72	28,808.00	112.75	169,006.95	661.47		
2021	613,411.69	548.72	126,043.50	112.75	739,455.19	661.47		
2022	275,503.90	548.72	56,610.39	112.75	332,114.30	661.47		
2023	341,459.65	548.72	70,162.94	112.75	411,622.59	661.47		
2024	393,643.28	548.72	80,885.61	112.75	474,528.89	661.47		
2025	425,467.21	548.72	87,424.77	112.75	512,891.98	661.47		
2026	131,927.26	548.72	27,108.34	112.75	159,035.60	661.47		
2027	568,666.15	548.72	116,849.21	112.75	685,515.36	661.47		
2028	330,957.35	548.72	68,004.93	112.75	398,962.28	661.47		
2029	302,287.81	548.72	62,113.93	112.75	364,401.74	661.47		
2030	388,553.87	548.72	79,839.84	112.75	468,393.70	661.47		
2031	472,018.91	548.72	96,990.19	112.75	569,009.10	661.47		
2032	115,449.68	548.72	23,722.54	112.75	139,172.22	661.47		

Table 44 – Carbon stocks per hectare of initial forest classes icl existing in the leakage belt

Table 15 b. Of the methodology, which is related to the above tables was not created for the following reason: This table is not applicable due no necessary discounts for uncertainties.

Post – deforestation LU/LC-classes fcl		
Name	Non Forest	
IDfcl	2	
Cab <i>fcl</i>	Cbb <i>fcl</i>	
C stock	C stock	
tCO₂e ha ⁻¹	tCO₂e ha⁻¹	
0	0	

Table 45 – Long-term (20-years) area weighted average carbon stock per zone

2.5 Additionality

For the purpose of the present analysis the VCS Tool for the Demonstration and Assessment of Additionality in VCS Agriculture, Forestry and Other Land Use (AFOLU) Project Activities (VT0001) Version 3.0 was applied (hereafter, "the additionality tool").

STEP 1. Identification of alternative land use scenarios to the AFOLU project activity

Sub-step 1a. Identify credible alternative land use scenarios to the proposed VCS AFOLU project activity

As described in section 1.8 of the present VCS-PD, the alternatives to the project activity considered are:

- Palm-heart extraction;
- Timber production;
- Small-scale subsistence agriculture;

These activities are shown to be credible alternatives by official data¹⁷⁸, timber and palm-heart being the products with the highest average production values in the four municipalities of the project area, as described in detail under section 1.8 of the present VCS-PD. Furthermore, these products are cited as the principal products in studies analysing the economy of the project area specifically¹⁷⁹.

Timber production was also the pre-project activity, being that Santana Madeiras Ltda. timber company exploited the area before its acquisition by Ecomapuá Conservação Ltda., the project proponent of the Ecomapuá Amazon REDD project¹⁸⁰.

Sub-step 1b. Consistency of credible land use scenarios with enforced mandatory applicable laws and regulations

Subsistence agriculture:

Given that the Ecomapuá lands are private property, subsistence agriculture and the accompanying slash-andburn practices, along with planting of corn and manioc, which occur within the project area, are illegal or of uncertain legal status¹⁸¹. The historical social dynamics in the region involve extractivist peoples settling unofficially and working, with practically no rights, for property owners, extracting products from the forest, which has been the established pattern for decades¹⁸².

¹⁷⁸ Source: IBGE Cidades: <u>http://www.ibge.gov.br/cidadesat/topwindow.htm?1</u>

¹⁷⁹ Fundação de Amparo e Desenvolvimento da Pesquisa (FADESP) (2002), 'Comunidades Agroextrativistas do Rio Mapuá Breves/PA, Diagnóstico Socio-Econômico'.

¹⁸⁰ São Paulo, 19.07.01 - "Instrumento particular de Alteração de Contrato Social, Santana Madeiras Ltda.".

¹⁸¹ Herrera (2003) – Dinâmica e desenvolvimento da agricultura familiar: o caso de Vila Amélia – Breves/ Pará.

¹⁸² Fundação de Ámparo e Desenvolvimento da Pesquisa (FADESP) (2002), 'Comunidades Agroextrativistas do Rio Mapuá – Breves/PA, Diagnóstico Socio-Econômico'.

VCS VERIFIED CARB®N STANDARD

PROJECT DESCRIPTION: VCS Version 3

The presence of the estimated 99 families living in the project area is not prohibited by Ecomapuá Ltda., 90% of the families within the project area having been there for over ten years, on the contrary, one of the goals of the present REDD project is to contribute to a solution to this social problem, through collaboration with a government environmental body. In this sense, laws against subsistence agriculture are systematically not enforced in the entirety of the project area, and the practice is widespread.

Palm heart extraction and timber production:

The extraction of palm heart and wood were prohibited in the project area at the time when Ecomapuá acquired the project area in 2001¹⁸³.

Studies argue that a large proportion of timber activity in Brazil is illegal, for instance SFB argued 36% in 2011¹⁸⁴. This dynamic generally continues unchecked with, for example, Pará being estimated to be the state most at risk of deforestation in the Amazon in 2011¹⁸⁵. The illegal exploration of timber and palm heart by residents in the project area was severe enough to cause Ecomapuá Ltda. to report these activities to IBAMA, the Brazilian environmental authority¹⁸⁶. This report did not result in any follow-up punitive action from any party.

For these reasons it is concluded that the laws relating to palm heart exploration and timber production are systematically not enforced and illegal activities are widespread in the project area.

Thus, all the land uses listed under sub-step 1a are retained in 1b, being either in accordance with the law or a widespread illegal practice in respect to which the law is not enforced.

Outcome of sub-step 1b:

List of plausible alternative land use scenarios to the VCS AFOLU activity that are in compliance with mandatory legislation and regulations taking into account their enforcement:

- Palm-heart extraction;
- Timber production;
- Small-scale subsistence agriculture;

Sub-step 1c. Selection of the baseline scenario:

The most plausible baseline scenario, as suggested by sub-step 1b, is commercial logging beyond the limits of Brazilian law, followed by slash-and-burn subsistence agriculture, planting manioc and corn. This dynamic, well-known in the project region, is confirmed by studies^{187, 188}.

STEP 2. Investment Analysis

Sub-step 2a. Determine appropriate analysis method

Sub-step 2b. Simple Cost Analysis

The simple cost analysis was determined as the appropriate analysis method, for the following reason: it was determined that the Ecomapuá Amazon REDD project does not generate any financial or economic benefits other than VCS related income. There is no for-profit sale of NTFPs, timber or any other product involved in the

¹⁸⁷Herrera (2003), "Dinâmica e desenvolvimento da agricultura familiar: o caso de Vila Amélia – Breves/ Pará."

¹⁸⁸ Fundação de Amparo e Desenvolvimento da Pesquisa (FADESP) (2002), 'Comunidades Agroextrativistas do Rio Mapuá - Breves/PA, Diagnóstico Socio-Econômico".

¹⁸³ Fundação de Amparo e Desenvolvimento da Pesquisa (FADESP) (2002), 'Comunidades Agroextrativistas do Rio Mapuá Breves/PA, Diagnóstico Socio-Econômico'.

¹⁸⁴ Serviço Florestal Brasileiro (SFB), Instituto de Pesquisa Ambiental da Amazônia (2011), "Florestas Nativas de Produção Brasileiras

 ¹⁸⁵ IMAZON (2011), "Sistema prevê desmate na Amazônia": <u>http://www.imazon.org.br/imprensa/imazon-na-midia/sistema-preve-desmate-na-amazonia</u>
 ¹⁸⁶ Fundação de Amparo e Desenvolvimento da Pesquisa (FADESP) (2002), 'Comunidades Agroextrativistas do Rio Mapuá

¹⁸⁶ Fundação de Amparo e Desenvolvimento da Pesquisa (FADESP) (2002), 'Comunidades Agroextrativistas do Rio Mapuá - Breves/PA, Diagnóstico Socio-Econômico'.

project activity, and the sum of Ecomapuá Ltda. annual financial balance, since the company's founding in 2001 until 2011, was minus R\$298,222.

Some of the costs involved in preservation of the area, without considering the costs of the present carbon project, are listed in Table 46 below.

	Estimated Annual Costs of Conservation (R\$)
Monitoring: Satellite Images	R\$ 27,734.56
Minimum salary for 3 area supervisors	R\$ 24,408.00
TOTAL	R\$ 52,142.56

Table 46 – Ecomapuá Ltda. estimated annual costs of conservation

The additionality tool then proscribes the following: \rightarrow *If it is concluded that the proposed VCS AFOLU project produces no financial benefits other than VCS related income then proceed to Step 4 (Common practice analysis).*

STEP 4. Common Practice Analysis:

Given that no financial benefits were found in the results of the simple cost analysis, the following step according to the V-C-S Addtionality Tool v3.0 is common practice analysis.

The practice of conservation of privately-owned forest areas on Marajó Island, as well as Pará state as a whole, is extremely rare. As such, no areas which are not REDD+ projects were found. As described in section 1.8 of the present VCS-PD, the dominant practices in the area that compose the deforestation dynamics include timber harvesting, extraction of palm heart, and subsistence agriculture.

The Brazilian Ministry of the Environment (MMA) provides a list of all the mapped REDD+ projects in Brazil up to 2012 under the following web link: <u>http://www.mma.gov.br/redd/index.php/conheca-os-projetos-mapeados</u>

All of the projects located in the State of Pará in the above list can be considered similar activities to the present REDD project, however they all have the essential distinction that none are located within privately-owned areas. For example, the following two projects in Pará state, which are located in Indigenous Reserves: the "Fundo Kayapó de Conservação em Terras Indígenas", and the Pilot REDD project in São Félix do Xingu municipality. The fact of being located within a government conservation area makes these projects essentially different to the Ecomapuá REDD project.

Other projects in the above list pursue fundamentally different routes to conservation in conjunction with government organs, such as the SEMA Pará project, implemented by the Pará state environmental organ, which aims to strengthen and improve the rural registration system (CAR) in order to reduce deforestation.

The exception to this is the RainTrust REDD+ project, which is a privately-owned forest conservation area, however it cannot be considered in the present common practice analysis because it is a registered V-C-S AFOLU project, which is to be excluded in accordance with the V-C-S Additionality Tool.

For the aforementioned reasons of the essential difference between the Ecomapuá Amazon REDD Project and similar projects in the area, the proposed project VCS AFOLU activity is not the baseline scenario, and hence it is additional.

2.6 Methodology Deviations

- Creation of Table 10 (VM0015 v1.1) was judged not to be necessary as the data utilized to formulate the deforestation scenarios included the area history. Specifically, the procedure did not employ detailed information to develop the scenarios. For example, the presence of communities was not employed as a specific variable to create the factor map, however it was embedded in the deforested area variable and was considered for

VCS VERIFIED CARB®N STANDARD

PROJECT DESCRIPTION: VCS Version 3

creation of the scenarios. In this sense, the absence of data relating to certain variables, such as the location of communities, roads and other factors, precluded the possibility of filling out Table 10 and creation of the risk map, the latter being based on the deforestation history.

3 QUANTIFICATION OF GHG EMISSION REDUCTIONS AND REMOVALS

3.1 Baseline Emissions

The total average biomass stock per hectare (Mg ha⁻¹) was converted to tCO₂e using the following equations:

$$Cabicl = ab \times CF \times 44/12$$

Where,

Cabicl	Average carbon stock per hectare in the above-ground biomass carbon pool of initial forest class icl; tCO_2e ha ⁻¹
ab	Average biomass stock per hectare in the above-ground biomass pool of initial forest class <i>icl</i> ; Mg ha ⁻¹
CF	Default value of carbon fraction in biomass

44/12 Ratio converting C to CO₂e

 $Cbbicl = bb \times CF \times 44/12$

Where,

Cbbicl	Average carbon stock per hectare in the below-ground biomass carbon pool of initial forest class <i>icl</i> ; tCO ₂ e ha ⁻¹
bb	Average biomass stock per hectare in the below-ground biomass pool of initial forest class <i>icl</i> ; Mg ha ⁻¹
CF	Default value of carbon fraction in biomass

44/12 Ratio converting C to CO₂e

The total baseline carbon stock change in the project area at year *t* is calculated as follows:

$$\Delta CBSLPAt = \Delta CabBSLPAicl, t + \Delta CbbBSLPAicl, t$$

Where,

$\Delta CBSLPAt$	Total baseline carbon stock changes in the project area at year t ; tCO ₂ e
------------------	--

- $\Delta CabBSLPAicl, t$ Total baseline carbon stock change for the above-ground biomass pool in the project area for initial forest class at year t; tCO₂e
- $\Delta CbbBSLPAicl, t$ Total baseline carbon stock change for the below-ground biomass pool in the project area for initial forest class at year t; tCO₂e

$\Delta CabBSLPAicl, t = ABSLPAicl, t \times \Delta Cabicl$

Where,

- $\Delta CabBSLPAicl, t$ Total baseline carbon stock change for the above-ground biomass pool in the project area for initial forest class at year t; tCO₂e
- ABSLPAicl, t Area of initial forest class icl deforested at time t within the project area in the baseline case; ha
- $\Delta Cabicl$ Average carbon stock change factor per hectare in the above-ground biomass carbon pool of initial forest class *icl*; tCO₂e ha⁻¹

$\triangle CbbBSLPAicl, t = ABSLPAicl, t \times \triangle Cbbicl$

Where,

- $\Delta CbbBSLPAicl, t$ Total baseline carbon stock change for the below-ground biomass pool in the project area for initial forest class at year t; tCO₂e
- ABSLPAicl, t Area of initial forest class icl deforested at time t within the project area in the baseline case; ha
- $\Delta Cbbicl$ Average carbon stock change factor per hectare in the below-ground biomass carbon pool of category *icl*; tCO₂e ha⁻¹

The Methodology step 6.1.3 stipulates that various change factors must be applied to the baseline case initial and post-deforestation classes in above-ground and below ground biomass. The carbon stocks in various pools are stipulated in section 2.3 of the present VCS-PD. As such, tables 47 - 49 below show carbon stock change factors for initial forest classes in above and below-ground carbon pools, which were then applied to calculate baseline carbon stock changes in various classes and pools shown in tables 50 - 57.

Year after deforestation		ΔCbb <i>icl,t</i>
		tCO ₂ e/ha
1	t*	-11.28
2	t*+1	-11.28
2	t*+2	-11.28
4	t*+3	-11.28
5	t*+4	-11.28
6	t*+5	-11.28
7	t*+6	-11.28
8	t*+7	-11.28
9	t*+8	-11.28
10	t*+9	-11.28
11	t*+10	0
12	t*+11	0
13	t*+12	0
14	t*+13	0
15	t*+14	0
16	t*+15	0
17	t*+16	0
18	t*+17	0
19	t*+18	0
20	t*+19	0

VCS VERIFIED CARB®N STANDARD

PROJECT DESCRIPTION: VCS Version 3

21	t*+20	0
22	t*+21	0
23	t*+22	0
24	t*+23	0
25	t*+24	0
26	t*+25	0
27	t*+26	0
28	t*+27	0
29	t*+28	0
30	t*+29	0

Table 47 – Carbon stock change factors for initial forest classes (icl) in below-ground carbon stocks (Method 1)

Year after		∆Cab <i>icl,t</i>	
deforestation		tCO2e/ha	
1	t*	-548.72	
2	t*+1	0	
2	t*+2	0	
4	t*+3	0	
5	t*+4	0	
6	t*+5	0	
7	t*+6	0	
8	t*+7	0	
9	t*+8	0	
10	t*+9	0	
11	t*+10	0	
12	t*+11	0	
13	t*+12	0	
14	t*+13	0	
15	t*+14	0	
16	t*+15	0	
17	t*+16	0	
18	t*+17	0	
19	t*+18	0	
20	t*+19	0	
21	t*+20	0	
22	t*+21	0	
23	t*+22	0	
24	t*+23	0	
25	t*+24	0	
26	t*+25	0	
27	t*+26	0	

28	t*+27	0
29	t*+28	0
30	t*+29	0

Table 48 – Carbon stock change factors for initial forest classes icl, above-ground carbon stocks (Method 1)

	ear after orestation	ΔCabf <i>cl,t</i> (tCO ₂ e/ha)	ΔCbbf <i>cl,t</i> (tCO ₂ e/ha)
1	t*	0	0
2	t*+1	0	0
2	t*+2	0	0
4	t*+3	0	0
5	t*+4	0	0
6	t*+5	0	0
7	t*+6	0	0
8	t*+7	0	0
9	t*+8	0	0
10	t*+9	0	0
11	t*+10	0	0
12	t*+11	0	0
13	t*+12	0	0
14	t*+13	0	0
15	t*+14	0	0
16	t*+15	0	0
17	t*+16	0	0
18	t*+17	0	0
19	t*+18	0	0
20	t*+19	0	0
21	t*+20	0	0
22	t*+21	0	0
23	t*+22	0	0
24	t*+23	0	0
25	t*+24	0	0
26	t*+25	0	0
27	t*+26	0	0
28	t*+27	0	0
29	t*+28	0	0
30	t*+29	0	0

Table 49 – Carbon stock change factors for final classes fcl or zones z (Method 1)

The resulting changes in carbon stock for initial (pre-deforestation) forest classes for the reference region, project area and leakage belt are shown in tables 50 - 57 below.

Carbon stock change in the above-ground biomass per initial forest class				
IDcl	1			
Name	Riparian Dense Tropical Rainforest	Total carbon stock change in the above-ground biomass of initial forest class in the reference region		
Project year	tCO ₂ e	ΔCabBSLRR <i>icl,t</i> Annual (tCO₂e)	ΔCabBSLRR <i>icl</i> Cumulative (tCO₂e)	
2003	1,605,874.20	1,605,874.20	1,605,874.20	
2004	1,210,194.61	1,210,194.61	2,816,068.80	
2005	1,178,753.14	1,178,753.14	3,994,821.95	
2006	1,508,422.12	1,508,422.12	5,503,244.06	
2007	1,375,797.30	1,375,797.30	6,879,041.36	
2008	1,516,159.02	1,516,159.02	8,395,200.38	
2009	1,555,447.14	1,555,447.14	9,950,647.52	
2010	1,280,046.24	1,280,046.24	11,230,693.76	
2011	1,259,579.11	1,259,579.11	12,490,272.87	
2012	1,531,632.83	1,531,632.83	14,021,905.70	
2013	1,461,122.74	1,461,122.74	15,483,028.44	
2014	1,162,642.82	1,162,642.82	16,645,671.26	
2015	228,353.93	228,353.93	16,874,025.19	
2016	1,413,110.03	1,413,110.03	18,287,135.22	
2017	1,225,997.65	1,225,997.65	19,513,132.87	
2018	348,709.44	348,709.44	19,861,842.31	
2019	3,990,123.78	3,990,123.78	23,851,966.10	
2020	408,827.99	408,827.99	24,260,794.09	
2021	2,367,053.96	2,367,053.96	26,627,848.04	
2022	1,157,517.37	1,157,517.37	27,785,365.41	
2023	1,171,594.86	1,171,594.86	28,956,960.27	
2024	1,521,351.30	1,521,351.30	30,478,311.57	
2025	1,612,335.17	1,612,335.17	32,090,646.75	
2026	365,011.27	365,011.27	32,455,658.02	
2027	2,318,126.88	2,318,126.88	34,773,784.90	
2028	1,160,055.26	1,160,055.26	35,933,840.16	
2029	1,132,598.60	1,132,598.60	37,066,438.75	
2030	1,459,536.90	1,459,536.90	38,525,975.65	
2031	1,639,756.26	1,639,756.26	40,165,731.91	
2032	322,040.67	322,040.67	40,487,772.58	

 Table 50 - Baseline carbon stock change in the above-ground biomass in the reference region

Carbon stock change in the below-ground biomass per initial forest class				
IDcl	1	Total carbon stock chan	an in the below ground	
Name	Riparian (Aluvial) Dense Tropical Rainforest	Total carbon stock change in the below-ground biomass of initial forest class in the reference region		
Project year	tCO ₂ e	ΔCbbBSLRR <i>icl,t</i>		
	10020	Annual (tCO ₂ e)	Cumulative (tCO ₂ e)	
2003	32,997.41	32,997.41	32,997.41	
2004	49,734.03	49,734.03	82,731.44	
2005	72,662.86	72,662.86	155,394.30	
2006	123,979.90	123,979.90	279,374.20	
2007	141,349.04	141,349.04	420,723.24	
2008	186,923.71	186,923.71	607,646.96	
2009	223,728.70	223,728.70	831,375.66	
2010	210,418.56	210,418.56	1,041,794.22	
2011	232,935.86	232,935.86	1,274,730.08	
2012	314,719.08	314,719.08	1,589,449.15	
2013	300,230.70	300,230.70	1,889,679.85	
2014	238,899.21	238,899.21	2,128,579.06	
2015	46,922.04	46,922.04	2,175,501.10	
2016	290,365.08	290,365.08	2,465,866.18	
2017	251,917.33	251,917.33	2,717,783.50	
2018	71,652.63	71,652.63	2,789,436.13	
2019	819,888.45	819,888.45	3,609,324.58	
2020	84,005.75	84,005.75	3,693,330.33	
2021	486,380.95	486,380.95	4,179,711.28	
2022	237,846.03	237,846.03	4,417,557.31	
2023	240,738.67	240,738.67	4,658,295.98	
2024	312,606.43	312,606.43	4,970,902.41	
2025	331,301.75	331,301.75	5,302,204.16	
2026	75,002.32	75,002.32	5,377,206.48	
2027	476,327.44	476,327.44	5,853,533.92	
2028	238,367.52	238,367.52	6,091,901.44	
2029	232,725.74	232,725.74	6,324,627.18	
2030	299,904.84	299,904.84	6,624,532.02	
2031	336,936.22	336,936.22	6,961,468.24	
2032	66,172.74	66,172.74	7,027,640.98	

Table 51 – Baseline carbon stock change in the below-ground biomass in the reference region

Carbon stock change in the above-ground biomass per initial forest class			
IDcl	1	Total carbon stock change in the above-ground biomass of initial forest class in the project area	
Name	Riparian (Aluvial) Dense Tropical Rainforest		
		ΔCabBSLPA <i>icl,t</i>	∆CabBSLPA <i>icl</i>
Project year	tCO ₂ e	Annual (tCO ₂ e)	Cumulative (tCO ₂ e)
2003	77,273.69	77,273.69	77,273.69
2004	69,282.49	69,282.49	146,556.18
2005	50,932.73	50,932.73	197,488.91
2006	84,590.85	84,590.85	282,079.75
2007	80,654.54	80,654.54	362,734.29
2008	83,355.71	83,355.71	446,090.00
2009	79,593.43	79,593.43	525,683.43
2010	78,175.00	78,175.00	603,858.43
2011	61,776.99	61,776.99	665,635.42
2012	98,419.11	98,419.11	764,054.52
2013	84,522.45	84,522.45	848,576.98
2014	69,048.35	69,048.35	917,625.33
2015	7,757.06	7,757.06	925,382.40
2016	88,136.72	88,136.72	1,013,519.12
2017	64,014.26	64,014.26	1,077,533.37
2018	31,507.50	31,507.50	1,109,040.87
2019	257,165.91	257,165.91	1,366,206.78
2020	14,273.84	14,273.84	1,380,480.62
2021	133,132.28	133,132.28	1,513,612.90
2022	58,693.11	58,693.11	1,572,306.01
2023	76,002.17	76,002.17	1,648,308.19
2024	94,872.56	94,872.56	1,743,180.75
2025	118,331.22	118,331.22	1,861,511.97
2026	10,663.96	10,663.96	1,872,175.92
2027	128,104.38	128,104.38	2,000,280.30
2028	71,084.14	71,084.14	2,071,364.44
2029	53,777.92	53,777.92	2,125,142.37
2030	81,529.61	81,529.61	2,206,671.97
2031	118,190.86	118,190.86	2,324,862.83
2032	8,906.09	8,906.09	2,333,768.92
L		·	·

Table 52 – Baseline carbon stock change in the above-ground biomass in the project area

Carbon stock change in the below-ground biomass per initial forest class			
IDcl	1		
Name	Riparian (Aluvial) Dense Tropical Rainforest	Total carbon stock change in the below- ground biomass of initial forest class in the project area	
Project year	tCO₂e	ΔCbbBSLPA <i>icl,t</i>	
2003	1,587.82	Annual (tCO₂e) 1,587.82	Cumulative (tCO ₂ e) 1,587.82
2003	2,847.23	2,847.23	4,435.04
2004			
	3,139.69	3,139.69	7,574.73
2006	6,952.67	6,952.67	14,527.40
2007	8,286.43	8,286.43	22,813.83
2008 2009	10,276.73	10,276.73	33,090.56
	11,448.37	11,448.37	44,538.93
2010	12,850.68	12,850.68	57,389.61
2011	11,424.51	11,424.51	68,814.12
2012	20,223.10	20,223.10	89,037.23
2013	17,367.63	17,367.63	106,404.86
2014	14,188.02	14,188.02	120,592.87
2015	1,593.92	1,593.92	122,186.79
2016	18,110.29	18,110.29	140,297.08
2017	13,153.61	13,153.61	153,450.69
2018	6,474.14	6,474.14	159,924.83
2019	52,842.31	52,842.31	212,767.14
2020	2,932.98	2,932.98	215,700.13
2021	27,355.95	27,355.95	243,056.07
2022	12,060.23	12,060.23	255,116.30
2023	15,616.89	15,616.89	270,733.19
2024	19,494.36	19,494.36	290,227.55
2025	24,314.63	24,314.63	314,542.18
2026	2,191.22	2,191.22	316,733.41
2027	26,322.82	26,322.82	343,056.22
2028	14,606.33	14,606.33	357,662.55
2029	11,050.26	11,050.26	368,712.81
2030	16,752.66	16,752.66	385,465.47
2031	24,285.79	24,285.79	409,751.26
2032	1,830.02	1,830.02	411,581.28

Table 53 – Baseline carbon stock change in the below-ground biomass in the project area

IDcl 1 Total carbon stock change of initial forest class in the project area factors to the project area forest class in the project area forest class andin the project area forest forest class andin the pro	Carbon stock change per initial forest class					
Name Hiparian (Aluvia) Dense Tropical Rainforest forest class in the project area ACabBSLPAic/,t annual ACbbBSLPAic/,t annual Cumulative annual cumulative tCO2e 2003 77,273.69 1,587.82 78,861.50 78,861.50 2004 69,282.49 2,847.23 72,129.72 150,991.22 2005 50,932.73 3,139.69 54,072.42 205,603.64 2006 84,590.85 6,952.67 91,543.52 296,607.16 2007 80,654.54 8,286.43 88,940.96 385,548.12 2008 83,355.71 10,276.73 93,632.44 479,180.56 2010 78,175.00 12,850.68 91,025.68 661,248.04 2011 61,776.99 11,424.51 73,201.50 734,449.54 2012 98,419.11 20,223.10 118,642.21 853,091.75 2013 84,522.45 17,367.63 101,890.08 954,981.83 2014 69,048.35 14,188.02 83,236.37 1,038,218.21 2015 7,757.06 1,593.92<	IDcl	1	1			
Project year annual annual cumulative 1CO2e 1CO2e 1CO2e 1CO2e 1CO2e 2003 77,273.69 1,587.82 78,861.50 78,861.50 2004 69,282.49 2,847.23 72,129.72 150,991.22 2005 50,932.73 3,139.69 54,072.42 205,063.64 2006 84,590.85 6,952.67 91,543.52 296,607.16 2007 80,654.54 8,286.43 88,940.96 385,548.12 2008 83,355.71 10,276.73 93,632.44 479,180.56 2009 79,593.43 11,448.37 91,041.80 570,222.36 2010 78,175.00 12,850.68 91,025.68 661,248.04 2011 61,776.99 11,424.51 73,201.50 734,449.54 2012 98,419.11 20,223.10 118,642.21 853,091.75 2013 84,522.45 17,367.63 101,890.86 1,489.24 2014 69,048.35 14,188.02 83,236.37 1,038,218.21	Name					
Project yearannualannual $1CO_{2e}$ $1CO_{2e}$ $1CO_{2e}$ 200377,273.691,587.8278,861.5078,861.50200469,282.492,847.2372,129.72150,991.22200550,932.733,139.6954,072.42205,063.64200684,590.856,952.6791,543.52296,607.16200780,654.548,286.4388,940.96385,548.12200883,355.7110,276.7393,632.44479,180.56200979,593.4311,448.3791,041.80570,222.36201078,175.0012,850.6891,025.68661,248.04201161,776.9911,424.5173,201.50734,449.54201298,419.1120,223.10118,642.21853,091.75201384,522.4517,367.63101,890.08954,981.83201469,048.3514,188.0283,236.371,038,218.2120157,757.061,593.929,350.981,047,569.19201688,136.7218,110.29106,247.011,153,816.19201764,014.2613,153.6177,167.871,230,984.06201831,507.506,474.1437,981.641,268,965.71202014,273.842,932.9817,206.831,576,668.982021133,132.2827,355.95160,488.231,576,668.98202258,693.1112,600.2370,753.341,827,422.32202376,002.1715,616.8991,619.061,919,041.37		ΔCabBSLPAicl,t	ΔCbbBSLPA <i>icl,t</i>		a successful a time	
2003 77,273.69 1,587.82 78,861.50 78,861.50 2004 69,282.49 2,847.23 72,129.72 150,991.22 2005 50,932.73 3,139.69 54,072.42 205,063.64 2006 84,590.85 6,952.67 91,543.52 296,607.16 2007 80,654.54 8,286.43 88,940.96 385,548.12 2008 83,355.71 10,276.73 93,632.44 479,180.56 2009 79,593.43 11,448.37 91,041.80 570,222.36 2010 78,175.00 12,850.68 91,025.68 661,248.04 2011 61,776.99 11,424.51 73,201.50 734,449.54 2012 98,419.11 20,223.10 118,642.21 853,091.75 2013 84,522.45 17,367.63 101,890.08 954,981.83 2014 69,048.35 14,188.02 83,236.37 1,038,218.21 2015 7,757.06 1,593.92 9,350.98 1,047,569.19 2016 88,136.72 18,110.29	Project year	annual	annual	annuai	cumulative	
200469,282.492,847.2372,129.72150,991.22200550,932.733,139.6954,072.42205,063.64200684,590.856,952.6791,543.52296,607.16200780,654.548,286.4388,940.96385,548.12200883,355.7110,276.7393,632.44479,180.56200979,593.4311,448.3791,041.80570,222.36201078,175.0012,850.6891,025.68661,248.04201161,776.9911,424.5173,201.50734,449.54201298,419.1120,223.10118,642.21853,091.75201384,522.4517,367.63101,890.08954,981.83201469,048.3514,188.0283,236.371,038,218.2120157,757.061,593.929,350.981,047,569.19201688,136.7218,110.29106,247.011,153,816.19201764,014.2613,153.6177,167.871,230,984.06201831,507.506,474.1437,981.641,268,965.712019257,165.9152,842.31310,008.221,578,973.92202014,273.842,932.9817,206.831,596,180.752021133,132.2827,355.95160,488.231,756,668.98202258,693.1112,060.2370,753.341,827,422.32202376,002.1715,618.8991,619.061,919,041.37202494,872.5619,494.36114,366.922,033,408.3020251		tCO ₂ e	tCO ₂ e	tCO ₂ e	tCO ₂ e	
200550,932.733,139.6954,072.42205,063.64200684,590.856,952.6791,543.52296,607.16200780,654.548,286.4388,940.96385,548.12200883,355.7110,276.7393,632.44479,180.56200979,593.4311,448.3791,041.80570,222.36201078,175.0012,850.6891,025.68661,248.04201161,776.9911,424.5173,201.50734,449.54201298,419.1120,223.10118,642.21853,091.75201384,522.4517,367.63101,890.08954,981.83201469,048.3514,188.0283,236.371,038,218.2120157,757.061,593.929,350.981,047,569.19201688,136.7218,110.29106,247.011,153,316.19201764,014.2613,153.6177,167.871,230,984.06201831,507.506,474.1437,981.641,268,965.712019257,165.9152,842.31310,008.221,578,973.92202014,273.842,932.9817,206.831,756,668.982021133,132.2827,355.95160,488.231,756,668.98202258,693.1112,060.2370,753.341,827,422.32202376,002.1715,616.8991,619.061,919,041.37202494,872.5619,494.36114,366.922,033,408.302025118,331.2224,314.63142,645.852,176,054.152026	2003	77,273.69	1,587.82	78,861.50	78,861.50	
200684,590.856,952.6791,543.52296,607.16200780,654.548,286.4388,940.96385,548.12200883,355.7110,276.7393,632.44479,180.56200979,593.4311,448.3791,041.80570,222.36201078,175.0012,850.6891,025.68661,248.04201161,776.9911,424.5173,201.50734,449.54201298,419.1120,223.10118,642.21853,091.75201384,522.4517,367.63101,890.08954,981.83201469,048.3514,188.0283,236.371,038,218.2120157,757.061,593.929,350.981,047,569.19201688,136.7218,110.29106,247.011,153,816.19201764,014.2613,153.6177,167.871,230,984.06201831,507.506,474.1437,981.641,268,965.712019257,165.9152,842.31310,008.221,578,973.92202014,273.842,932.9817,206.831,756,668.98202258,693.1112,060.2370,753.341,827,422.32202376,002.1715,616.8991,619.061,919,041.37202494,872.5619,494.36114,366.922,033,408.302025118,331.2224,314.63142,645.852,176,054.15202610,663.962,191.2212,855.182,188,909.332027128,104.3826,322.82154,427.202,343,336.532028 <td>2004</td> <td>69,282.49</td> <td>2,847.23</td> <td>72,129.72</td> <td>150,991.22</td>	2004	69,282.49	2,847.23	72,129.72	150,991.22	
200780,654.548,286.4388,940.96385,548.12200883,355.7110,276.7393,632.44479,180.56200979,593.4311,448.3791,041.80570,222.36201078,175.0012,850.6891,025.68661,248.04201161,776.9911,424.5173,201.50734,449.54201298,419.1120,223.10118,642.21853,091.75201384,522.4517,367.63101,890.08954,981.83201469,048.3514,188.0283,236.371,038,218.2120157,757.061,593.929,350.981,047,569.19201688,136.7218,110.29106,247.011,153,816.19201764,014.2613,153.6177,167.871,230,984.06201831,507.506,474.1437,981.641,268,965.712019257,165.9152,842.31310,008.221,578,973.92202014,273.842,932.9817,206.831,756,668.98202258,693.1112,060.2370,753.341,827,422.32202376,002.1715,616.8991,619.061,919,041.37202494,872.5619,494.36114,366.922,033,408.302025118,331.2224,314.63142,645.852,176,054.15202610,663.962,191.2212,855.182,188,909.332027128,104.3826,322.82154,427.202,343,336.53202871,084.1414,606.3385,690.472,429,027.002029	2005	50,932.73	3,139.69	54,072.42	205,063.64	
200883,355.7110,276.7393,632.44479,180.56200979,593.4311,448.3791,041.80570,222.36201078,175.0012,850.6891,025.68661,248.04201161,776.9911,424.5173,201.50734,449.54201298,419.1120,223.10118,642.21853,091.75201384,522.4517,367.63101,890.08954,981.83201469,048.3514,188.0283,236.371,038,218.2120157,757.061,593.929,350.981,047,569.19201688,136.7218,110.29106,247.011,153,816.19201764,014.2613,153.6177,167.871,230,984.06201831,507.506,474.1437,981.641,268,965.712019257,165.9152,842.31310,008.221,578,973.92202014,273.842,932.9817,206.831,596,180.752021133,132.2827,355.95160,488.231,756,668.98202258,693.1112,060.2370,753.341,827,422.32202376,002.1715,616.8991,619.061,919,041.37202494,872.5619,494.36114,366.922,033,408.302025118,331.2224,314.63142,645.852,176,054.15202610,663.962,191.2212,855.182,188,909.332027128,104.3826,322.82154,427.202,343,336.53202871,084.1414,606.3385,690.472,429,027.00 <td< td=""><td>2006</td><td>84,590.85</td><td>6,952.67</td><td>91,543.52</td><td>296,607.16</td></td<>	2006	84,590.85	6,952.67	91,543.52	296,607.16	
200979,593.4311,448.3791,041.80570,222.36201078,175.0012,850.6891,025.68661,248.04201161,776.9911,424.5173,201.50734,449.54201298,419.1120,223.10118,642.21853,091.75201384,522.4517,367.63101,890.08954,981.83201469,048.3514,188.0283,236.371,038,218.2120157,757.061,593.929,350.981,047,569.19201688,136.7218,110.29106,247.011,153,816.19201764,014.2613,153.6177,167.871,230,984.06201831,507.506,474.1437,981.641,268,965.712019257,165.9152,842.31310,008.221,578,973.92202014,273.842,932.9817,206.831,596,180.752021133,132.2827,355.95160,488.231,756,668.98202258,693.1112,060.2370,753.341,827,422.32202376,002.1715,616.8991,619.061,919,041.37202494,872.5619,494.36114,366.922,033,408.302025118,331.2224,314.63142,645.852,176,054.15202610,663.962,191.2212,855.182,188,909.332027128,104.3826,322.82154,427.202,343,336.53202871,084.1414,606.3385,690.472,429,027.00202953,777.9211,050.2664,828.182,493,855.18<	2007	80,654.54	8,286.43	88,940.96	385,548.12	
201078,175.0012,850.6891,025.68661,248.04201161,776.9911,424.5173,201.50734,449.54201298,419.1120,223.10118,642.21853,091.75201384,522.4517,367.63101,890.08954,981.83201469,048.3514,188.0283,236.371,038,218.2120157,757.061,593.929,350.981,047,569.19201688,136.7218,110.29106,247.011,153,816.19201764,014.2613,153.6177,167.871,230,984.06201831,507.506,474.1437,981.641,268,965.712019257,165.9152,842.31310,008.221,578,973.92202014,273.842,932.9817,206.831,596,180.752021133,132.2827,355.95160,488.231,756,668.98202258,693.1112,060.2370,753.341,827,422.32202376,002.1715,616.8991,619.061,919,041.37202494,872.5619,494.36114,366.922,033,408.302025118,331.2224,314.63142,645.852,176,054.15202610,663.962,191.2212,855.182,188,909.332027128,104.3826,322.82154,427.202,343,336.53202871,084.1414,606.3385,690.472,429,027.00202953,777.9211,050.2664,828.182,493,855.18203081,529.6116,752.6698,282.272,592,137.45 <tr< td=""><td>2008</td><td>83,355.71</td><td>10,276.73</td><td>93,632.44</td><td>479,180.56</td></tr<>	2008	83,355.71	10,276.73	93,632.44	479,180.56	
201161,776.9911,424.5173,201.50734,449.54201298,419.1120,223.10118,642.21853,091.75201384,522.4517,367.63101,890.08954,981.83201469,048.3514,188.0283,236.371,038,218.2120157,757.061,593.929,350.981,047,569.19201688,136.7218,110.29106,247.011,153,816.19201764,014.2613,153.6177,167.871,230,984.06201831,507.506,474.1437,981.641,268,965.712019257,165.9152,842.31310,008.221,578,973.92202014,273.842,932.9817,206.831,596,180.752021133,132.2827,355.95160,488.231,756,668.98202258,693.1112,060.2370,753.341,827,422.32202376,002.1715,616.8991,619.061,919,041.37202494,872.5619,494.36114,366.922,033,408.302025118,331.2224,314.63142,645.852,176,054.15202610,663.962,191.2212,855.182,188,909.332027128,104.3826,322.82154,427.202,343,336.53202871,084.1414,606.3385,690.472,429,027.00202953,777.9211,050.2664,828.182,493,855.18203081,529.6116,752.6698,282.272,592,137.452031118,190.8624,285.79142,476.652,734,614.09 <td>2009</td> <td>79,593.43</td> <td>11,448.37</td> <td>91,041.80</td> <td>570,222.36</td>	2009	79,593.43	11,448.37	91,041.80	570,222.36	
201298,419.1120,223.10118,642.21853,091.75201384,522.4517,367.63101,890.08954,981.83201469,048.3514,188.0283,236.371,038,218.2120157,757.061,593.929,350.981,047,569.19201688,136.7218,110.29106,247.011,153,816.19201764,014.2613,153.6177,167.871,230,984.06201831,507.506,474.1437,981.641,268,965.712019257,165.9152,842.31310,008.221,578,973.92202014,273.842,932.9817,206.831,596,180.752021133,132.2827,355.95160,488.231,756,668.98202258,693.1112,060.2370,753.341,827,422.32202376,002.1715,616.8991,619.061,919,041.37202494,872.5619,494.36114,366.922,033,408.302025118,331.2224,314.63142,645.852,176,054.15202610,663.962,191.2212,855.182,188,909.332027128,104.3826,322.82154,427.202,343,336.53202871,084.1414,606.3385,690.472,429,027.00202953,777.9211,050.2664,828.182,493,855.18203081,529.6116,752.6698,282.272,592,137.452031118,190.8624,285.79142,476.652,734,614.09	2010	78,175.00	12,850.68	91,025.68	661,248.04	
201384,522.4517,367.63101,890.08954,981.83201469,048.3514,188.0283,236.371,038,218.2120157,757.061,593.929,350.981,047,569.19201688,136.7218,110.29106,247.011,153,816.19201764,014.2613,153.6177,167.871,230,984.06201831,507.506,474.1437,981.641,268,965.712019257,165.9152,842.31310,008.221,578,973.92202014,273.842,932.9817,206.831,596,180.752021133,132.2827,355.95160,488.231,756,668.98202258,693.1112,060.2370,753.341,827,422.32202376,002.1715,616.8991,619.061,919,041.37202494,872.5619,494.36114,366.922,033,408.302025118,331.2224,314.63142,645.852,176,054.15202610,663.962,191.2212,855.182,188,909.332027128,104.3826,322.82154,427.202,343,336.53202871,084.1414,606.3385,690.472,429,027.00202953,777.9211,050.2664,828.182,493,855.18203081,529.6116,752.6698,282.272,592,137.452031118,190.8624,285.79142,476.652,734,614.09	2011	61,776.99	11,424.51	73,201.50	734,449.54	
201469,048.3514,188.0283,236.371,038,218.2120157,757.061,593.929,350.981,047,569.19201688,136.7218,110.29106,247.011,153,816.19201764,014.2613,153.6177,167.871,230,984.06201831,507.506,474.1437,981.641,268,965.712019257,165.9152,842.31310,008.221,578,973.92202014,273.842,932.9817,206.831,596,180.752021133,132.2827,355.95160,488.231,756,668.98202258,693.1112,060.2370,753.341,827,422.32202376,002.1715,616.8991,619.061,919,041.37202494,872.5619,494.36114,366.922,033,408.302025118,331.2224,314.63142,645.852,176,054.15202610,663.962,191.2212,855.182,188,909.332027128,104.3826,322.82154,427.202,343,336.53202871,084.1414,606.3385,690.472,429,027.00202953,777.9211,050.2664,828.182,493,855.18203081,529.6116,752.6698,282.272,592,137.452031118,190.8624,285.79142,476.652,734,614.09	2012	98,419.11	20,223.10	118,642.21	853,091.75	
20157,757.061,593.929,350.981,047,569.19201688,136.7218,110.29106,247.011,153,816.19201764,014.2613,153.6177,167.871,230,984.06201831,507.506,474.1437,981.641,268,965.712019257,165.9152,842.31310,008.221,578,973.92202014,273.842,932.9817,206.831,596,180.752021133,132.2827,355.95160,488.231,756,668.98202258,693.1112,060.2370,753.341,827,422.32202376,002.1715,616.8991,619.061,919,041.37202494,872.5619,494.36114,366.922,033,408.302025118,331.2224,314.63142,645.852,176,054.15202610,663.962,191.2212,855.182,188,909.332027128,104.3826,322.82154,427.202,343,336.53202871,084.1414,606.3385,690.472,429,027.00202953,777.9211,050.2664,828.182,493,855.18203081,529.6116,752.6698,282.272,592,137.452031118,190.8624,285.79142,476.652,734,614.09	2013	84,522.45	17,367.63	101,890.08	954,981.83	
201688,136.7218,110.29106,247.011,153,816.19201764,014.2613,153.6177,167.871,230,984.06201831,507.506,474.1437,981.641,268,965.712019257,165.9152,842.31310,008.221,578,973.92202014,273.842,932.9817,206.831,596,180.752021133,132.2827,355.95160,488.231,756,668.98202258,693.1112,060.2370,753.341,827,422.32202376,002.1715,616.8991,619.061,919,041.37202494,872.5619,494.36114,366.922,033,408.302025118,331.2224,314.63142,645.852,176,054.15202610,663.962,191.2212,855.182,188,909.332027128,104.3826,322.82154,427.202,343,336.53202871,084.1414,606.3385,690.472,429,027.00202953,777.9211,050.2664,828.182,493,855.18203081,529.6116,752.6698,282.272,592,137.452031118,190.8624,285.79142,476.652,734,614.09	2014	69,048.35	14,188.02	83,236.37	1,038,218.21	
201764,014.2613,153.6177,167.871,230,984.06201831,507.506,474.1437,981.641,268,965.712019257,165.9152,842.31310,008.221,578,973.92202014,273.842,932.9817,206.831,596,180.752021133,132.2827,355.95160,488.231,756,668.98202258,693.1112,060.2370,753.341,827,422.32202376,002.1715,616.8991,619.061,919,041.37202494,872.5619,494.36114,366.922,033,408.302025118,331.2224,314.63142,645.852,176,054.15202610,663.962,191.2212,855.182,188,909.332027128,104.3826,322.82154,427.202,343,336.53202871,084.1414,606.3385,690.472,429,027.00202953,777.9211,050.2664,828.182,493,855.18203081,529.6116,752.6698,282.272,592,137.452031118,190.8624,285.79142,476.652,734,614.09	2015	7,757.06	1,593.92	9,350.98	1,047,569.19	
201831,507.506,474.1437,981.641,268,965.712019257,165.9152,842.31310,008.221,578,973.92202014,273.842,932.9817,206.831,596,180.752021133,132.2827,355.95160,488.231,756,668.98202258,693.1112,060.2370,753.341,827,422.32202376,002.1715,616.8991,619.061,919,041.37202494,872.5619,494.36114,366.922,033,408.302025118,331.2224,314.63142,645.852,176,054.15202610,663.962,191.2212,855.182,188,909.332027128,104.3826,322.82154,427.202,343,336.53202871,084.1414,606.3385,690.472,429,027.00202953,777.9211,050.2664,828.182,493,855.18203081,529.6116,752.6698,282.272,592,137.452031118,190.8624,285.79142,476.652,734,614.09	2016	88,136.72	18,110.29	106,247.01	1,153,816.19	
2019257,165.9152,842.31310,008.221,578,973.92202014,273.842,932.9817,206.831,596,180.752021133,132.2827,355.95160,488.231,756,668.98202258,693.1112,060.2370,753.341,827,422.32202376,002.1715,616.8991,619.061,919,041.37202494,872.5619,494.36114,366.922,033,408.302025118,331.2224,314.63142,645.852,176,054.15202610,663.962,191.2212,855.182,188,909.332027128,104.3826,322.82154,427.202,343,336.53202871,084.1414,606.3385,690.472,429,027.00202953,777.9211,050.2664,828.182,493,855.18203081,529.6116,752.6698,282.272,592,137.452031118,190.8624,285.79142,476.652,734,614.09	2017	64,014.26	13,153.61	77,167.87	1,230,984.06	
202014,273.842,932.9817,206.831,596,180.752021133,132.2827,355.95160,488.231,756,668.98202258,693.1112,060.2370,753.341,827,422.32202376,002.1715,616.8991,619.061,919,041.37202494,872.5619,494.36114,366.922,033,408.302025118,331.2224,314.63142,645.852,176,054.15202610,663.962,191.2212,855.182,188,909.332027128,104.3826,322.82154,427.202,343,336.53202871,084.1414,606.3385,690.472,429,027.00202953,777.9211,050.2664,828.182,493,855.18203081,529.6116,752.6698,282.272,592,137.452031118,190.8624,285.79142,476.652,734,614.09	2018	31,507.50	6,474.14	37,981.64	1,268,965.71	
2021133,132.2827,355.95160,488.231,756,668.98202258,693.1112,060.2370,753.341,827,422.32202376,002.1715,616.8991,619.061,919,041.37202494,872.5619,494.36114,366.922,033,408.302025118,331.2224,314.63142,645.852,176,054.15202610,663.962,191.2212,855.182,188,909.332027128,104.3826,322.82154,427.202,343,336.53202871,084.1414,606.3385,690.472,429,027.00202953,777.9211,050.2664,828.182,493,855.18203081,529.6116,752.6698,282.272,592,137.452031118,190.8624,285.79142,476.652,734,614.09	2019	257,165.91	52,842.31	310,008.22	1,578,973.92	
202258,693.1112,060.2370,753.341,827,422.32202376,002.1715,616.8991,619.061,919,041.37202494,872.5619,494.36114,366.922,033,408.302025118,331.2224,314.63142,645.852,176,054.15202610,663.962,191.2212,855.182,188,909.332027128,104.3826,322.82154,427.202,343,336.53202871,084.1414,606.3385,690.472,429,027.00202953,777.9211,050.2664,828.182,493,855.18203081,529.6116,752.6698,282.272,592,137.452031118,190.8624,285.79142,476.652,734,614.09	2020	14,273.84	2,932.98	17,206.83	1,596,180.75	
202376,002.1715,616.8991,619.061,919,041.37202494,872.5619,494.36114,366.922,033,408.302025118,331.2224,314.63142,645.852,176,054.15202610,663.962,191.2212,855.182,188,909.332027128,104.3826,322.82154,427.202,343,336.53202871,084.1414,606.3385,690.472,429,027.00202953,777.9211,050.2664,828.182,493,855.18203081,529.6116,752.6698,282.272,592,137.452031118,190.8624,285.79142,476.652,734,614.09	2021	133,132.28	27,355.95	160,488.23	1,756,668.98	
202494,872.5619,494.36114,366.922,033,408.302025118,331.2224,314.63142,645.852,176,054.15202610,663.962,191.2212,855.182,188,909.332027128,104.3826,322.82154,427.202,343,336.53202871,084.1414,606.3385,690.472,429,027.00202953,777.9211,050.2664,828.182,493,855.18203081,529.6116,752.6698,282.272,592,137.452031118,190.8624,285.79142,476.652,734,614.09	2022	58,693.11	12,060.23	70,753.34	1,827,422.32	
2025118,331.2224,314.63142,645.852,176,054.15202610,663.962,191.2212,855.182,188,909.332027128,104.3826,322.82154,427.202,343,336.53202871,084.1414,606.3385,690.472,429,027.00202953,777.9211,050.2664,828.182,493,855.18203081,529.6116,752.6698,282.272,592,137.452031118,190.8624,285.79142,476.652,734,614.09	2023	76,002.17	15,616.89	91,619.06	1,919,041.37	
202610,663.962,191.2212,855.182,188,909.332027128,104.3826,322.82154,427.202,343,336.53202871,084.1414,606.3385,690.472,429,027.00202953,777.9211,050.2664,828.182,493,855.18203081,529.6116,752.6698,282.272,592,137.452031118,190.8624,285.79142,476.652,734,614.09	2024	94,872.56	19,494.36	114,366.92	2,033,408.30	
2027128,104.3826,322.82154,427.202,343,336.53202871,084.1414,606.3385,690.472,429,027.00202953,777.9211,050.2664,828.182,493,855.18203081,529.6116,752.6698,282.272,592,137.452031118,190.8624,285.79142,476.652,734,614.09	2025	118,331.22	24,314.63	142,645.85	2,176,054.15	
202871,084.1414,606.3385,690.472,429,027.00202953,777.9211,050.2664,828.182,493,855.18203081,529.6116,752.6698,282.272,592,137.452031118,190.8624,285.79142,476.652,734,614.09	2026	10,663.96	2,191.22	12,855.18	2,188,909.33	
202953,777.9211,050.2664,828.182,493,855.18203081,529.6116,752.6698,282.272,592,137.452031118,190.8624,285.79142,476.652,734,614.09	2027	128,104.38	26,322.82	154,427.20	2,343,336.53	
203081,529.6116,752.6698,282.272,592,137.452031118,190.8624,285.79142,476.652,734,614.09	2028	71,084.14	14,606.33	85,690.47	2,429,027.00	
2031 118,190.86 24,285.79 142,476.65 2,734,614.09	2029	53,777.92	11,050.26	64,828.18	2,493,855.18	
	2030	81,529.61	16,752.66	98,282.27	2,592,137.45	
2032 8,906.09 1,830.02 10,736.11 2,745,350.21	2031	118,190.86	24,285.79	142,476.65	2,734,614.09	
	2032	8,906.09	1,830.02	10,736.11	2,745,350.21	

Table 54 – Total baseline carbon stock change of initial forest class in project area

Carbon stock	Carbon stock change in the above-ground biomass per initial forest class			
IDcl	1			
Name	Riparian (Aluvial) Dense Tropical Rainforest	Total carbon stock change in the above- ground biomass of initial forest class in the leakage belt		
Project year	+CO o	ΔCabBSLLK <i>icl,t</i>	∆CabBSLLK <i>icl</i>	
Project year	tCO ₂ e	Annual (tCO ₂ e)	Cumulative (tCO ₂ e)	
2003	422,098.60	422,098.60	422,098.60	
2004	321,961.16	321,961.16	744,059.76	
2005	312,290.17	312,290.17	1,056,349.93	
2006	396,439.04	396,439.04	1,452,788.98	
2007	356,693.37	356,693.37	1,809,482.35	
2008	396,636.13	396,636.13	2,206,118.48	
2009	429,447.90	429,447.90	2,635,566.38	
2010	302,014.12	302,014.12	2,937,580.51	
2011	348,603.67	348,603.67	3,286,184.18	
2012	385,606.52	385,606.52	3,671,790.70	
2013	338,985.41	338,985.41	4,010,776.11	
2014	295,466.73	295,466.73	4,306,242.84	
2015	84,354.21	84,354.21	4,390,597.06	
2016	376,155.70	376,155.70	4,766,752.76	
2017	319,655.45	319,655.45	5,086,408.20	
2018	62,096.75	62,096.75	5,148,504.95	
2019	1,008,611.01	1,008,611.01	6,157,115.96	
2020	140,198.94	140,198.94	6,297,314.90	
2021	613,411.69	613,411.69	6,910,726.60	
2022	275,503.90	275,503.90	7,186,230.50	
2023	341,459.65	341,459.65	7,527,690.15	
2024	393,643.28	393,643.28	7,921,333.44	
2025	425,467.21	425,467.21	8,346,800.65	
2026	131,927.26	131,927.26	8,478,727.91	
2027	568,666.15	568,666.15	9,047,394.06	
2028	330,957.35	330,957.35	9,378,351.41	
2029	302,287.81	302,287.81	9,680,639.22	
2030	388,553.87	388,553.87	10,069,193.09	
2031	472,018.91	472,018.91	10,541,212.00	
2032	115,449.68	115,449.68	10,656,661.68	

Table 55 – Baseline carbon stock change in the above-ground biomass in the leakage belt area

Carbon stock change in the below-ground biomass per initial forest class			
IDcl	1		
Name	Riparian (Aluvial) Dense Tropical Rainforest	Total carbon stock change in the below-ground biomass of initial forest class in the leakage belt	
		ΔCbbBSLLK <i>icl,t</i>	ΔCbbBSLLK <i>icl</i>
Project year	tCO ₂ e	Annual (tCO ₂ e)	Cumulative (tCO ₂ e)
2003	8,673.26	8,673.26	8,673.26
2004	13,231.28	13,231.28	21,904.54
2005	19,250.76	19,250.76	41,155.30
2006	32,584.03	32,584.03	73,739.33
2007	36,646.58	36,646.58	110,385.91
2008	48,900.35	48,900.35	159,286.26
2009	61,769.90	61,769.90	221,056.16
2010	49,646.16	49,646.16	270,702.32
2011	64,467.80	64,467.80	335,170.12
2012	79,234.22	79,234.22	414,404.34
2013	69,654.54	69,654.54	484,058.88
2014	60,712.34	60,712.34	544,771.22
2015	17,333.06	17,333.06	562,104.28
2016	77,292.27	77,292.27	639,396.54
2017	65,682.63	65,682.63	705,079.17
2018	12,759.61	12,759.61	717,838.77
2019	207,248.84	207,248.84	925,087.61
2020	28,808.00	28,808.00	953,895.61
2021	126,043.50	126,043.50	1,079,939.11
2022	56,610.39	56,610.39	1,136,549.50
2023	70,162.94	70,162.94	1,206,712.45
2024	80,885.61	80,885.61	1,287,598.05
2025	87,424.77	87,424.77	1,375,022.82
2026	27,108.34	27,108.34	1,402,131.16
2027	116,849.21	116,849.21	1,518,980.37
2028	68,004.93	68,004.93	1,586,985.31
2029	62,113.93	62,113.93	1,649,099.24
2030	79,839.84	79,839.84	1,728,939.08
2031	96,990.19	96,990.19	1,825,929.26
2032	23,722.54	23,722.54	1,849,651.80

Table 56 – Baseline carbon stock change in the below-ground biomass in the leakage belt area

	Carbon	stock change per i	nitial forest class	
IDcl	1		T	
Name	Riparian (Aluvial) Der Rainforest	ise Tropical		ck change of initial the leakage belt
Project year	ΔCabBSLLK <i>icl,t</i> annual	ΔCbbBSLLK <i>icl,t</i> annual	annual	cumulative
year	tCO ₂ e	tCO ₂ e	tCO ₂ e	tCO ₂ e
2003	422,098.60	8,673.26	430,771.86	430,771.86
2004	321,961.16	13,231.28	335,192.44	765,964.30
2005	312,290.17	19,250.76	331,540.94	1,097,505.24
2006	396,439.04	32,584.03	429,023.07	1,526,528.31
2007	356,693.37	36,646.58	393,339.95	1,919,868.26
2008	396,636.13	48,900.35	445,536.48	2,365,404.74
2009	429,447.90	61,769.90	491,217.81	2,856,622.55
2010	302,014.12	49,646.16	351,660.28	3,208,282.83
2011	348,603.67	64,467.80	413,071.47	3,621,354.30
2012	385,606.52	79,234.22	464,840.74	4,086,195.04
2013	338,985.41	69,654.54	408,639.95	4,494,834.99
2014	295,466.73	60,712.34	356,179.07	4,851,014.06
2015	84,354.21	17,333.06	101,687.27	4,952,701.33
2016	376,155.70	77,292.27	453,447.96	5,406,149.30
2017	319,655.45	65,682.63	385,338.07	5,791,487.37
2018	62,096.75	12,759.61	74,856.35	5,866,343.72
2019	1,008,611.01	207,248.84	1,215,859.85	7,082,203.57
2020	140,198.94	28,808.00	169,006.95	7,251,210.52
2021	613,411.69	126,043.50	739,455.19	7,990,665.71
2022	275,503.90	56,610.39	332,114.30	8,322,780.01
2023	341,459.65	70,162.94	411,622.59	8,734,402.60
2024	393,643.28	80,885.61	474,528.89	9,208,931.49
2025	425,467.21	87,424.77	512,891.98	9,721,823.47
2026	131,927.26	27,108.34	159,035.60	9,880,859.07
2027	568,666.15	116,849.21	685,515.36	10,566,374.43
2028	330,957.35	68,004.93	398,962.28	10,965,336.72
2029	302,287.81	62,113.93	364,401.74	11,329,738.46
2030	388,553.87	79,839.84	468,393.70	11,798,132.16
2031	472,018.91	96,990.19	569,009.10	12,367,141.26
2032	115,449.68	23,722.54	139,172.22	12,506,313.48

Table 57 - Total baseline carbon stock change of initial forest class in leakage belt

3.2 Project Emissions

Some unplanned deforestation may happen in the project area despite the implemented REDD project activity. The level at which deforestation will actually be reduced in the project case depends on the effectiveness of the

proposed activities, which cannot be measured ex ante. Ex post measurements of the project results will be important to determine actual emission reductions.

To allow ex ante projections to be made, a conservative assumption was made about the effectiveness of the proposed project activities in order to define the Effectiveness Index (EI). The estimated value of EI is used to multiply the baseline projections by the factor (1 - El) and the result was considered to be the ex ante estimated emissions from unplanned deforestation in the project case. This is calculated as follows:

$\Delta CUDdPAt = \Delta CBSLPAt \times (1 - EI)$

Where:

∆CUDdPAt	Total <i>ex ante</i> actual carbon stock change due to unavoided unplanned deforestation at year t in the project area; tCO ₂ e
$\Delta CBSLPAt$	Total baseline carbon stock change in the project area at year t ; tCO ₂ e
EI	Ex ante estimated Effectiveness Index; %
t	1, 2, 3 T, a year of the proposed project crediting period; dimensionless

$\Delta CPSPAt = (\Delta CPAdPAt + \Delta CUDdPAt) - \Delta CPAiPAt$

Where,

-	
$\Delta CPSPAt$	Sum of ex ante estimated actual carbon stock changes in the project area at year t ; tCO ₂ e
$\Delta CPAdPAt$	Total decrease in carbon stock due to all planned activities at year t in the project area; tCO ₂ e
$\Delta CUDdPAt$	Total <i>ex ante</i> actual carbon stock change due to unavoided unplanned deforestation at year t in the project area; tCO ₂ e
ΔCPAiPAt	Total increase in carbon stock due to all planned activities at year t in the project area; tCO ₂ e

The calculation of the effectiveness index was based on the estimated deforestation activity due to the resident families in the baseline case (1993 - 2001) compared to that in the project case (2002 - 2032).

The baseline estimate involved: the general requirement of four hectares of land per family^{190,191}, which was assumed to include all aspects involved in the dynamic of deforestation (subsistence crops, palm heart, and timber); multiplied by the 99 families known to be resident in the project area¹⁹² including a factor of 2.5% population growth in Furos de Breves¹⁹³; finally the agricultural cycle was taken into account, specifically of clearing of cropland followed by three years of use, a subsequent 12 year fallow period, and then a return to the same area for re-use^{194,195}.

This was compared to a project scenario calculation which employed a reduction factor owing to the environmental education activities carried out in the project case. These activities currently involve 38 families (38% of project total), which, with the expansion of the social project, was expected to evolve as follows:

¹⁹⁰ P. G. Martorano (September 2002) "Caracterização da vegetação e uso do solo das terras pertencentes à empresa Ecomapuá Conservação Ltda No Município de Breves, Pará" ¹⁹¹ Fundação de Amparo e Desenvolvimento da Pesquisa (FADESP) (2002), 'Comunidades Agroextrativistas do Rio Mapuá

Breves/Pa, Diagnóstico Socio-Econômico'

¹⁹² Fundação de Amparo e Desenvolvimento da Pesquisa (FADESP) (2002), 'Comunidades Agroextrativistas do Rio Mapuá – Breves/Pa, Diagnóstico Socio-Econômico'.

Source: Instituto Brasileiro de Geografia e Estatística (IBGE)

¹⁹⁴ Casarim, F. et al. (WINROCK International) (2010), "Assessing the potential for generating carbon offsets in the EcoMapuá Conservação properties in the Marajó Island, Brazil".

P. G. Martorano (September 2002) "Caracterização da vegetação e uso do solo das terras pertencentes à empresa Ecomapuá Conservação Ltda No Município de Breves, Pará"

- 1st baseline period: 38% of families benefitted
- 2nd baseline period: 63% of families benefitted
- 3rd baseline period: 88% of families benefitted

Applying these reduction factors, the EI, was as follows:

 $EI = \frac{\text{Average annual deforestation in project case (ha)}}{\text{Average annual deforestation in baseline case (ha)}}$

EI = 17.85%

The El value was defined as 17.85%. It was then applied to the ex-ante estimate of net carbon stock change in the project area under the project scenario, shown in Table 58 below.

Project	Total carbon stock decrease due to planned activities		Total carbon stock increase due to planned activities		decreas unavoided	Total carbon stock decrease due to unavoided unplanned deforestation		Total carbon stock change in the project case		Total ex ante estimated actual non-CO ₂ emissions from forest fires in the project area		
year	ΔCPAdPAt	ΔCPA dPA cumul	ΔCPAi PAt	ΔCPAi PA cumula	ΔCUDdPAt	ΔCUDdPA	ΔCPSPAt	ΔCPSPA	EBBPS PAt	EBBPSPA		
	annual	ative	annual	tive	annual	cumulative	annual	cumulative	annual	cumulative		
	tCO ₂ e	tCO ₂ e	tCO ₂ e	tCO ₂ e	tCO ₂ e	tCO ₂ e	tCO ₂ e	tCO ₂ e	tCO ₂ e	tCO ₂ e		
2003	0	0	0	0	14,074.69	14,074.69	14,074.69	14,074.69	0	0		
2004	0	0	0	0	12,873.25	26,947.94	12,873.25	26,947.94	0	0		
2005	0	0	0	0	9,650.50	36,598.43	9,650.50	36,598.43	0	0		
2006	0	0	0	0	16,338.10	52,936.53	16,338.10	52,936.53	0	0		
2007	0	0	0	0	15,873.61	68,810.14	15,873.61	68,810.14	0	0		
2008	0	0	0	0	16,710.91	85,521.05	16,710.91	85,521.05	0	0		
2009	0	0	0	0	16,248.55	101,769.60	16,248.55	101,769.60	0	0		
2010	0	0	0	0	16,245.68	118,015.28	16,245.68	118,015.28	0	0		
2011	0	0	0	0	13,064.53	131,079.81	13,064.53	131,079.81	0	0		
2012	0	0	0	0	21,174.50	152,254.30	21,174.50	152,254.30	0	0		
2013	0	0	0	0	18,184.68	170,438.99	18,184.68	170,438.99	0	0		
2014	0	0	0	0	14,855.49	185,294.48	14,855.49	185,294.48	0	0		
2015	0	0	0	0	1,668.90	186,963.38	1,668.90	186,963.38	0	0		
2016	0	0	0	0	18,962.28	205,925.66	18,962.28	205,925.66	0	0		
2017	0	0	0	0	13,772.42	219,698.08	13,772.42	219,698.08	0	0		
2018	0	0	0	0	6,778.72	226,476.80	6,778.72	226,476.80	0	0		
2019	0	0	0	0	55,328.26	281,805.06	55,328.26	281,805.06	0	0		
2020	0	0	0	0	3,070.96	284,876.03	3,070.96	284,876.03	0	0		
2021	0	0	0	0	28,642.90	313,518.93	28,642.90	313,518.93	0	0		
2022	0	0	0	0	12,627.60	326,146.53	12,627.60	326,146.53	0	0		
2023	0	0	0	0	16,351.58	342,498.11	16,351.58	342,498.11	0	0		
2024	0	0	0	0	20,411.47	362,909.58	20,411.47	362,909.58	0	0		
2025	0	0	0	0	25,458.51	388,368.09	25,458.51	388,368.09	0	0		
2026	0	0	0	0	2,294.31	390,662.40	2,294.31	390,662.40	0	0		
2027	0	0	0	0	27,561.17	418,223.56	27,561.17	418,223.56	0	0		
2028	0	0	0	0	15,293.48	433,517.05	15,293.48	433,517.05	0	0		
2029	0	0	0	0	11,570.11	445,087.16	11,570.11	445,087.16	0	0		
2030	0	0	0	0	17,540.78	462,627.94	17,540.78	462,627.94	0	0		
2031	0	0	0	0	25,428.31	488,056.26	25,428.31	488,056.26	0	0		
2032	0	0	0	0	1,916.11	489,972.37	1,916.11	489,972.37	0	0		

Table 58 – Total ex ante estimated actual net carbon stock changes and emissions of non-CO2 gases in the project area

3.3 Leakage

Activities that will cause deforestation within the project area in the baseline case could be displaced outside the project boundary due to the implementation of the AUD project activity. A greater decrease in carbon stocks within the leakage belt during the project scenario than those predicted *ex-ante* would indicate displacement of deforestation activities due to the project. The baseline rate of deforestation within the leakage belt is shown in the variable ABSLLK, the calculated value of which is shown in table 59, below. The ex ante activity displacement leakage was calculated based on the anticipated combined effectiveness of the proposed leakage prevention measures and project activities. This was done by multiplying the estimated baseline carbon stock changes for the project area by a "Displacement Leakage Factor" (*DLF*) representing the percent of deforestation expected to be displaced outside the project boundary. It is calculated as follows:

$\Delta CADLKt = \Delta CBSLPAt \times DLF$

Where,

 $\Delta CADLKt$ Total decrease in carbon stocks due to displaced deforestation at year *t*; tCO₂e

DLF Displacement leakage factor; %

The actual calculated values for $\Delta CADLKt$, annually and cumulatively, across the project crediting period are shown in Table 65 below.

Leakage prevention activities generating a decrease in carbon stocks should be estimated ex ante and accounted. According to the planned interventions, the projected carbon stocks were estimated in the leakage management areas under the baseline case and project scenario.

$\Delta CLPMLKt = \Delta CBSLLKt + \Delta CPSLKt$

Where,

 $\Delta CLPMLKt$ Carbon stock decrease due to leakage prevention measures at year *t*; tCO₂e

 $\Delta CBSLLKt$ Annual carbon stock changes in leakage management areas in the baseline case at year *t*; tCO₂e

 $\Delta CPSLKt$ Total annual carbon stock change in leakage management areas in the project case; tCO₂e

No decrease in carbon stocks due to activities implemented in the leakage management area was identified.

$\Delta CLKt = \Delta CADLKt + \Delta CLPMLKt$

Where:

$\Delta CLKt$	Total decrease in carbon stocks within the leakage belt at year t , tCO ₂ e
$\Delta CADLKt$	Total decrease in carbon stocks due to displaced deforestation at year t ; tCO ₂ e
$\Delta CLPMLKt$	Carbon stock decrease due to leakage prevention measures at year t ; tCO ₂ e

The calculated value of $\Delta CLKt$ in the present project is shown in Table 65 below.

Calculation of displacement leakage factor (DLF)

The displacement leakage factor was based on the following assumptions:

- The activity likely to be involved in leakage was timber extraction, as the other activities palm heart and subsistence agriculture deforestation are unlikely to travel significant distances^{199,200}.
- The proportion of commercial timber per hectare: based on 40 m³/ha of estimated commercial timber within the project area²⁰¹ of a total wood volume of 472.08 m³/ha in the region²⁰² = 8.47%

On the latter assumptions, a baseline scenario of annual leakage was developed applying 8.47% of total baseline deforestation in the project area, which was considered conservative as it applied the factor to all hectares deforested.

To create the project scenario leakage, reduction factors were applied to baseline leakage levels, taking into account environmental education programs implemented by the project. The applied reduction factors were the same as described above in the EI section:

- 1st baseline period: 38% of families benefitted
- 2nd baseline period: 63% of families benefitted
- 3rd baseline period: 88% of families benefitted

Thus the DLF was calculated as:

$$DLF = \frac{\text{Project scenario leakage (ha)}}{\text{Total deforestation within the project area (ha)}}$$

DLF = 3.10%

To reduce the risk of activity displacement leakage, baseline deforestation agents shall participate in activities within the project area and leakage management area, so that deforestation will be reduced and the risk of displacement minimized.

If leakage prevention activities include measures to enhance cropland and grazing land areas, a reduction in carbon stocks and/or an increase in GHG emissions may occur compared to the baseline case. The reduction in carbon stocks (Δ CLPMLKt) shall be calculated as explained above. The leakage emissions due to the project activity shall be calculated as follows:

ELKt = EgLKt + EADLKt

Where:

ELKtSum of ex ante estimated leakage emissions at year t; tCO2eEgLKtEmissions from grazing animals in leakage management areas at year t; tCO2e

EADLKt Total ex ante increase in GHG emissions due to displaced forest fires at year t; tCO₂e

No displaced forest fires nor increase in GHG emissions due to activities implemented in the leakage management area, such as emissions from grazing animals, fertilizer, or fuel use, were identified.

¹⁹⁹ Interview: D. Meneses 23.11.12.

 ²⁰⁰ Fundação de Amparo e Desenvolvimento da Pesquisa (FADESP) (2002), "Comunidades Agroextrativistas do Rio Mapuá
 – Breves/Pa: Diagnóstico Socio-Econômico. Convênio UFPA/FADESP/NOVA AMAFRUTAS, 2002."

²⁰¹ A. Ribeiro de Barros (2001), "Inventário Florestal Amostral para empresa Santana Madeiras Ltda. no Município de Breves – Pará."

²⁰²Nogueira, E.M. (2008), "Densidade da Madeira e Alometria de Arvores em Florestas do Arco do Desmatamento: Implicações para Biomassa e Emissão de Carbono a Partir de Mudanças no Uso da Terra na Amazônia Brasileira." 151 p, INPA, Manaus

Area establi defores per zone withi be	tation n the leakage		ne deforestation eakage belt
ID <i>ct</i>	2	ABSLLKt	ABSLLKt
Name	Non forest	annual	cumulative
Project year	ha	ha	ha
2003	769.25	769.25	769.25
2004	586.75	586.75	1,356.00
2005	569.13	569.13	1,925.13
2006	722.48	722.48	2,647.61
2007	650.05	650.05	3,297.66
2008	722.84	722.84	4,020.51
2009	782.64	782.64	4,803.15
2010	550.40	550.40	5,353.55
2011	635.31	635.31	5,988.85
2012	702.74	702.74	6,691.60
2013	617.78	617.78	7,309.38
2014	538.47	538.47	7,847.84
2015	153.73	153.73	8,001.57
2016	685.52	685.52	8,687.09
2017	582.55	582.55	9,269.64
2018	113.17	113.17	9,382.81
2019	1,838.13	1,838.13	11,220.94
2020	255.50	255.50	11,476.44
2021	1,117.90	1,117.90	12,594.34
2022	502.09	502.09	13,096.43
2023	622.29	622.29	13,718.72
2024	717.39	717.39	14,436.11
2025	775.39	775.39	15,211.49
2026	240.43	240.43	15,451.92
2027	1,036.36	1,036.36	16,488.28
2028	603.15	603.15	17,091.43
2029	550.90	550.90	17,642.33
2030	708.11	708.11	18,350.44
2031	860.22	860.22	19,210.66
2032	210.40	210.40	19,421.06

 Table 59 – Annual areas deforested in each zone within the leakage belt in the baseline case (baseline activity data per zone)

	Carbon stock	change in leakage management area in the baseline case				
Project year	IDc <i>li</i>	= 1	annual	cumulative		
year	ABSLLKicl, t	Ctot <i>icl,t</i>	∆CBSLLKt			
	(ha)	tCO ₂ e	tCO ₂ e	tCO ₂ e		
2003	0	0	0	0		
2004	0	0	0	0		
2005	0	0	0	0		
2006	0	0	0	0		
2007	0	0	0	0		
2008	0	0	0	0		
2009	0	0	0	0		
2010	0	0	0	0		
2011	0	0	0	0		
2012	0	0	0	0		
2013	0	0	0	0		
2014	0	0	0	0		
2015	0	0	0	0		
2016	0	0	0	0		
2017	0	0	0	0		
2018	0	0	0	0		
2019	0	0	0	0		
2020	0	0	0	0		
2021	0	0	0	0		
2022	0	0	0	0		
2023	0	0	0	0		
2024	0	0	0	0		
2025	0	0	0	0		
2026	0	0	0	0		
2027	0	0	0	0		
2028	0	0	0	0		
2029	0	0	0	0		
2030	0	0	0	0		
2031	0	0	0	0		
2032	0	0	0	0		

 Z032
 0
 0
 0
 0
 0

 Table 60 - Ex ante estimated carbon stock change in leakage management areas in the baseline case
 0
 0
 0
 0

	Carbon s	tock change in areas in the		nagement
Project	IDo	: <i>li</i> = 1	annual	cumulative
year	APSLKfcl,t	Ctot <i>icl,t</i>	ΔCPSLLKt	ACPSLLK
	(ha)	tCO ₂ e	tCO ₂ e	tCO ₂ e
2003	0	0	0	0
2004	0	0	0	0
2005	0	0	0	0
2006	0	0	0	0
2007	0	0	0	0
2008	0	0	0	0
2009	0	0	0	0
2010	0	0	0	0
2011	0	0	0	0
2012	0	0	0	0
2013	0	0	0	0
2014	0	0	0	0
2015	0	0	0	0
2016	0	0	0	0
2017	0	0	0	0
2018	0	0	0	0
2019	0	0	0	0
2020	0	0	0	0
2021	0	0	0	0
2022	0	0	0	0
2023	0	0	0	0
2024	0	0	0	0
2025	0	0	0	0
2026	0	0	0	0
2027	0	0	0	0
2028	0	0	0	0
2029	0	0	0	0
2030	0	0	0	0
2031	0	0	0	0
2032	0	0	0	0

 Table 61 – Ex ante estimated carbon stock change in leakage management areas in the project case

Project year		change in the ne case	change i	rbon stock n the project ase	Net carbon stock change due to leakage prevention measures		
	annual	cumulative	annual	cumulative	annual	cumulative	
	tCO ₂ e	tCO ₂ e	tCO ₂ e	tCO ₂ e	tCO ₂ e	tCO ₂ e	
2003	0	0	0	0	0	0	
2004	0	0	0	0	0	0	
2005	0	0	0	0	0	0	
2006	0	0	0	0	0	0	
2007	0	0	0	0	0	0	
2008	0	0	0	0	0	0	
2009	0	0	0	0	0	0	
2010	0	0	0	0	0	0	
2011	0	0	0	0	0	0	
2012	0	0	0	0	0	0	
2013	0	0	0	0	0	0	
2014	0	0	0	0	0	0	
2015	0	0	0	0	0	0	
2016	0	0	0	0	0	0	
2017	0	0	0	0	0	0	
2018	0	0	0	0	0	0	
2019	0	0	0	0	0	0	
2020	0	0	0	0	0	0	
2021	0	0	0	0	0	0	
2022	0	0	0	0	0	0	
2023	0	0	0	0	0	0	
2024	0	0	0	0	0	0	
2025	0	0	0	0	0	0	
2026	0	0	0	0	0	0	
2027	0	0	0	0	0	0	
2028	0	0	0	0	0	0	
2029	0	0	0	0	0	0	
2030	0	0	0	0	0	0	
2031	0	0	0	0	0	0	
2032	0	0	0	0	0	0	

 Table 62 – Ex ante estimated net carbon stock change in leakage management areas

Project	due to leakag	ck decrease ge prevention sures	from in	nte GHG emissions creased grazing activities	Total ex ante increase in GHG emissions due to leakage prevention measures		
year	annual	cumulative ∆CLPMLK	annual EgLKt	cumulative EgLK	annual ELPMLKt	cumulative ELPMLK	
	tCO ₂ e	tCO ₂ e	tCO ₂ e	tCO ₂ e	tCO ₂ e	tCO ₂ e	
2003	0	0	0	0	0	0	
2004	0	0	0	0	0	0	
2005	0	0	0	0	0	0	
2006	0	0	0	0	0	0	
2007	0	0	0	0	0	0	
2008	0	0	0	0	0	0	
2009	0	0	0	0	0	0	
2010	0	0	0	0	0	0	
2011	0	0	0	0	0	0	
2012	0	0	0	0	0	0	
2013	0	0	0	0	0	0	
2014	0	0	0	0	0	0	
2015	0	0	0	0	0	0	
2016	0	0	0	0	0	0	
2017	0	0	0	0	0	0	
2018	0	0	0	0	0	0	
2019	0	0	0	0	0	0	
2020	0	0	0	0	0	0	
2021	0	0	0	0	0	0	
2022	0	0	0	0	0	0	
2023	0	0	0	0	0	0	
2024	0	0	0	0	0	0	
2025	0	0	0	0	0	0	
2026	0	0	0	0	0	0	
2027	0	0	0	0	0	0	
2028	0	0	0	0	0	0	
2029	0	0	0	0	0	0	
2030	0	0	0	0	0	0	
2031	0	0	0	0	0	0	
2032	0	0	0	0	0	0	

 Table 63 – Ex ante estimated total emissions above the baseline from leakage prevention activities

Project year	Total ex ante estima stocks due to dis	Total ex ante estimated increase in GHG emissions due to displaced forest fires			
	Annual	Cumulative	Annual	Cumulative	
	ΔCADLK <i>t</i>	ΔCADLK <i>t</i>	ΔEADLK <i>t</i>	$\Delta EADLKt$	
	tCO ₂ e	tCO ₂ e	tCO ₂ e	tCO ₂ e	
2003	2,448.55	2,448.55	0	0	
2004	2,239.54	4,688.09	0	0	
2005	1,678.88	6,366.98	0	0	
2006	2,842.31	9,209.29	0	0	
2007	2,761.51	11,970.80	0	0	
2008	2,907.17	14,877.97	0	0	
2009	2,826.74	17,704.71	0	0	
2010	2,826.24	20,530.94	0	0	
2011	2,272.82	22,803.76	0	0	
2012	3,683.70	26,487.46	0	0	
2013	3,163.56	29,651.02	0	0	
2014	2,584.39	32,235.41	0	0	
2015	290.34	32,525.74	0	0	
2016	3,298.84	35,824.58	0	0	
2017	2,395.97	38,220.55	0	0	
2018	1,179.28	39,399.83	0	0	
2019	9,625.38	49,025.21	0	0	
2020	534.25	49,559.46	0	0	
2021	4,982.96	54,542.42	0	0	
2022	2,196.80	56,739.23	0	0	
2023	2,844.66	59,583.89	0	0	
2024	3,550.95	63,134.84	0	0	
2025	4,428.98	67,563.82	0	0	
2026	399.14	67,962.96	0	0	
2027	4,794.78	72,757.73	0	0	
2028	2,660.58	75,418.32	0	0	
2029	2,012.84	77,431.15	0	0	
2030	3,051.54	80,482.70	0	0	
2031	4,423.73	84,906.42	0	0	
2032	333.34	85,239.77	0	0	

 Table 64 – Ex ante estimated leakage due to activity displacement

Project	Total ex ante GHG emissions from increased grazing activities		ssions from ased grazing		Total ex ante decrease in carbon stocks due to displaced deforestation		Carbon stock decrease due to leakage prevention measures		Total net carbon stock change due to leakage within the leakage belt		Total net increase in emissions due to leakage	
year	annual EgLKt tCO₂e	cumulative EgLK tCO₂e	annual EADLKt tCO ₂ e	cumulative EADLK tCO₂e	annual ∆CADLK _t tCO₂e	cumulative ∆CADLK tCO₂e	annual ∆CLPMLK _t tCO₂e	cumulative ∆CLPMLK tCO₂e	annual ∆CLKt tCO₂e	cumulative ∆CLK tCO₂e	annual ELK _t tCO ₂ e	cumulative ELK tCO ₂ e
2003	0	0	0	0	2,448.55	2,448.55	0	0	2,448.55	2,448.55	0	0
2004	0	0	0	0	2,239.54	4,688.09	0	0	2,239.54	4,688.09	0	0
2005	0	0	0	0	1,678.88	6,366.98	0	0	1,678.88	6,366.98	0	0
2006	0	0	0	0	2,842.31	9,209.29	0	0	2,842.31	9,209.29	0	0
2007	0	0	0	0	2,761.51	11,970.80	0	0	2,761.51	11,970.80	0	0
2008	0	0	0	0	2,907.17	14,877.97	0	0	2,907.17	14,877.97	0	0
2009	0	0	0	0	2,826.74	17,704.71	0	0	2,826.74	17,704.71	0	0
2010	0	0	0	0	2,826.24	20,530.94	0	0	2,826.24	20,530.94	0	0
2011	0	0	0	0	2,272.82	22,803.76	0	0	2,272.82	22,803.76	0	0
2012	0	0	0	0	3,683.70	26,487.46	0	0	3,683.70	26,487.46	0	0
2013	0	0	0	0	3,163.56	29,651.02	0	0	3,163.56	29,651.02	0	0
2014	0	0	0	0	2,584.39	32,235.41	0	0	2,584.39	32,235.41	0	0
2015	0	0	0	0	290.34	32,525.74	0	0	290.34	32,525.74	0	0
2016	0	0	0	0	3,298.84	35,824.58	0	0	3,298.84	35,824.58	0	0
2017	0	0	0	0	2,395.97	38,220.55	0	0	2,395.97	38,220.55	0	0
2018	0	0	0	0	1,179.28	39,399.83	0	0	1,179.28	39,399.83	0	0
2019	0	0	0	0	9,625.38	49,025.21	0	0	9,625.38	49,025.21	0	0
2020	0	0	0	0	534.25	49,559.46	0	0	534.25	49,559.46	0	0
2021	0	0	0	0	4,982.96	54,542.42	0	0	4,982.96	54,542.42	0	0
2022	0	0	0	0	2,196.80	56,739.23	0	0	2,196.80	56,739.23	0	0
2023	0	0	0	0	2,844.66	59,583.89	0	0	2,844.66	59,583.89	0	0
2024	0	0	0	0	3,550.95	63,134.84	0	0	3,550.95	63,134.84	0	0
2025	0	0	0	0	4,428.98	67,563.82	0	0	4,428.98	67,563.82	0	0
2026	0	0	0	0	399.14	67,962.96	0	0	399.14	67,962.96	0	0
2027	0	0	0	0	4,794.78	72,757.73	0	0	4,794.78	72,757.73	0	0

2	2028	0	0	0	0	2,660.58	75,418.32	0	0	2,660.58	75,418.32	0	0
2	2029	0	0	0	0	2,012.84	77,431.15	0	0	2,012.84	77,431.15	0	0
2	2030	0	0	0	0	3,051.54	80,482.70	0	0	3,051.54	80,482.70	0	0
2	2031	0	0	0	0	4,423.73	84,906.42	0	0	4,423.73	84,906.42	0	0
2	2032	0	0	0	0	333.34	85,239.77	0	0	333.34	85,239.77	0	0

Table 65 – Ex ante estimated total leakage

3.4 Summary of GHG Emission Reductions and Removals

The net anthropogenic GHG emission reduction of the proposed AUD project activity is calculated as follows:

 $\Delta REDDt = (\Delta CBSLPAt + EBBBSLPAt) - (\Delta CPSPAt + EBBPSPAt) - (\Delta CLKt + ELKt)$

Where:	
∆REDDt	<i>Ex ante</i> estimated net anthropogenic greenhouse gas emission reduction attributable to the AUD project activity at year t ; tCO ₂ e
$\Delta CBSLPAt$	Sum of baseline carbon stock changes in the project area at year t ; tCO ₂ e
EBBBSLPAt	Sum of baseline emissions from biomass burning in the project area at year t ; tCO ₂ e
$\Delta CPSPAt$	Sum of ex ante estimated actual carbon stock changes in the project area at year t; tCO2e
	Note: If $\triangle CPSPAt$ represents a net increase in carbon stocks, a negative sign before the absolute value of $\triangle CPSPAt$ shall be used. If $\triangle CPSPAt$ represents a net decrease, the positive sign shall be used.
EBBPSPAt	Sum of (<i>ex ante</i> estimated) actual emissions from biomass burning in the project area at year t ; tCO_2e
$\Delta CLKt$	Sum of <i>ex ante</i> estimated leakage net carbon stock changes at year t ; tCO ₂ e
	Note: If the cumulative sum of $\triangle CLKt$ within a fixed baseline period is > 0, $\triangle CLKt$ shall be set to zero.
ELKt	Sum of <i>ex ante</i> estimated leakage emissions at year <i>t</i> ; tCO ₂ e
t	1, 2, 3 T, a year of the proposed project crediting period; dimensionless.

The number of Verified Carbon Units (VCUs) to be generated through the proposed AUD project activity at year *t* is calculated as follows:

$VCUt = \Delta REDDt - VBCt$

$VBCt = (\Delta CBSLPAt - \Delta CPSPAt) \times RFt$

Where:

VCUt	Number of Verified Carbon Units that can be traded at time t ; t CO ₂ -e
∆REDDt	<i>Ex ante</i> estimated net anthropogenic greenhouse gas emission reduction attributable to the AUD project activity at year t ; tCO ₂ e
VBCt	Number of Buffer Credits deposited in the VCS Buffer at time t ; t CO ₂ -e
$\Delta CBSLPAt$	Sum of baseline carbon stock changes in the project area at year t ; tCO ₂ e
$\Delta CPSPAt$	Sum of <i>ex ante</i> estimated actual carbon stock changes in the project area at year t ; tCO ₂ -e ha ⁻¹
RFt	Risk factor used to calculate VCS buffer credits; %

1, 2, 3 ... T, a year of the proposed project crediting period; dimensionless.

The RF*t* was estimated using the most recent version of the *VCS-approved AFOLU Non-Permanence Risk Tool* and the resulting value of RFt was 34%.

The specific summary of GHG reductions and removals in the Ecomapuá Amazon REDD project is included in table 66 below. The latter table includes estimates of GHG emissions reduction (REDDt), calculations of buffer and leakage, and the resulting calculation of tradable Verified Carbon Units (VCUt).

t

Project year		carbon stock nanges	emissio	ne GHG ons from burning	Ex ante p carbon chang	stock	GHG en from b	project nissions iomass ning	carbon sto	leakage ck changes leakage belt	Ex ante leakage GHG emissions		Ex ante net anthropogenic GHG emission reductions		Ex ante VCUs tradable		Ex ante buffer credits	
Proje	annual	cumulative	annual	cumulat ive	annual	cumulat ive	annual	cumulat ive	annual	cumulative	annual	cumulat ive	annual	cumulative	annual	cumulative	annual	cumulat ive
	ΔCBSL PAt	ACBSLPA	ΔEBBB SLPAt	ΔEBBB SLPA	ΔCPSLPAt	∆CPSL PA	∆EBBB SPAt	ΔEBBB SPA	ΔCLKt	ACLK	ELKt	ELK	∆REDDt	ΔREDD	∆VCUt	∆VCU	∆VBCt	ΔVBC
	tCO ₂ e	tCO ₂ e	tCO ₂ e	tCO ₂ e	tCO ₂ e	tCO ₂ e	tCO ₂ e	tCO ₂ e	tCO ₂ e	tCO ₂ e	tCO ₂ e	tCO ₂ e	tCO ₂ e	tCO ₂ e	tCO ₂ e	tCO ₂ e	tCO ₂ e	tCO ₂ e
2003	78,862	78,862	0	0	14,075	14,075	0	0	2,449	2,449	0	0	62,338	62,338	41,143	41,143	21,195	21,195
2004	72,130	150,991	0	0	12,873	26,948	0	0	2,240	4,688	0	0	57,017	119,355	37,631	78,774	19,386	40,581
2005	54,072	205,064	0	0	9,650	36,598	0	0	1,679	6,367	0	0	42,743	162,098	28,210	106,984	14,533	55,113
2006	91,544	296,607	0	0	16,338	52,937	0	0	2,842	9,209	0	0	72,363	234,461	47,759	154,743	24,603	79,717
2007	88,941	385,548	0	0	15,874	68,810	0	0	2,762	11,971	0	0	70,306	304,767	46,401	201,144	23,904	103,621
2008	93,632	479,181	0	0	16,711	85,521	0	0	2,907	14,878	0	0	74,014	378,782	48,849	249,993	25,165	128,786
2009	91,042	570,222	0	0	16,249	101,770	0	0	2,827	17,705	0	0	71,967	450,748	47,497	297,490	24,469	153,254
2010	91,026	661,248	0	0	16,246	118,015	0	0	2,826	20,531	0	0	71,954	522,702	47,489	344,979	24,464	177,719
2011	73,202	734,450	0	0	13,065	131,080	0	0	2,273	22,804	0	0	57,864	580,566	38,190	383,169	19,674	197,392
2012	118,642	853,092	0	0	21,174	152,254	0	0	3,684	26,487	0	0	93,784	674,350	61,897	445,066	31,887	229,279
2013	101,890	954,982	0	0	18,185	170,439	0	0	3,164	29,651	0	0	80,542	754,892	53,157	498,223	27,384	256,663
2014	83,236	1,038,218	0	0	14,855	185,294	0	0	2,584	32,235	0	0	65,796	820,688	43,425	541,648	22,371	279,034
2015	9,351	1,047,569	0	0	1,669	186,963	0	0	290	32,526	0	0	7,392	828,080	4,878	546,526	2,513	281,547
2016	106,247	1,153,816	0	0	18,962	205,926	0	0	3,299	35,825	0	0	83,986	912,066	55,430	601,956	28,555	310,102
2017	77,168	1,230,984	0	0	13,772	219,698	0	0	2,396	38,221	0	0	60,999	973,065	40,259	642,215	20,740	330,842
2018	37,982	1,268,966	0	0	6,779	226,477	0	0	1,179	39,400	0	0	30,024	1,003,089	19,815	662,030	10,208	341,050
2019	310,008	1,578,974	0	0	55,328	281,805	0	0	9,625	49,025	0	0	245,055	1,248,144	161,736	823,766	83,319	424,369
2020	17,207	1,596,181	0	0	3,071	284,876	0	0	534	49,559	0	0	13,602	1,261,745	8,977	832,743	4,625	428,993
2021	160,488	1,756,669	0	0	28,643	313,519	0	0	4,983	54,542	0	0	126,862	1,388,608	83,729	916,472	43,133	472,127
2022	70,753	1,827,422	0	0	12,628	326,147	0	0	2,197	56,739	0	0	55,929	1,444,537	36,913	953,385	19,016	491,142
2023	91,619	1,919,041	0	0	16,352	342,498	0	0	2,845	59,584	0	0	72,423	1,516,959	47,799	1,001,184	24,624	515,766
2024	114,367	2,033,408	0	0	20,411	362,910	0	0	3,551	63,135	0	0	90,405	1,607,364	59,666	1,060,850	30,738	546,504
2025	142,646	2,176,054	0	0	25,459	388,368	0	0	4,429	67,564	0	0	112,758	1,720,122	74,420	1,135,270	38,338	584,842

2026	12,855	2,188,909	0	0	2,294	390,662	0	0	399	67,963	0	0	10,162	1,730,284	6,706	1,141,976	3,455	588,297
2027	154,427	2,343,337	0	0	27,561	418,224	0	0	4,795	72,758	0	0	122,071	1,852,355	80,567	1,222,543	41,504	629,801
2028	85,690	2,429,027	0	0	15,293	433,517	0	0	2,661	75,418	0	0	67,736	1,920,092	44,706	1,267,249	23,030	652,831
2029	64,828	2,493,855	0	0	11,570	445,087	0	0	2,013	77,431	0	0	51,245	1,971,337	33,821	1,301,070	17,423	670,255
2030	98,282	2,592,137	0	0	17,541	462,628	0	0	3,052	80,483	0	0	77,690	2,049,027	51,275	1,352,345	26,415	696,669
2031	142,477	2,734,614	0	0	25,428	488,056	0	0	4,424	84,906	0	0	112,625	2,161,651	74,332	1,426,677	38,292	734,961
2032	10,736	2,745,350	0	0	1,916	489,972	0	0	333	85,240	0	0	8,487	2,170,138	5,601	1,432,278	2,885	737,847

Table 66 - Ex ante estimated net anthropogenic GHG emission reductions (REDDt) and Verified Carbon Units (VCUt)

4 MONITORING

4.1 Data and Parameters Available at Validation

Data Unit / Parameter:	CF
Data unit:	tC/tdm
Description:	Default value of carbon fraction in biomass.
Source of data:	Values from the literature (e.g. IPCC 2003. Good practice guidance for land use, land-use change and forestry. Kanagawa: IGES, 2003. Available at: <http: www.ipcc-<br="">nggip.iges.or.jp/public/gpglulucf/gpglulucf.html>.)</http:>
Value applied:	0.5
Justification of choice of data or description of measurement methods and procedures applied:	The default value was used to be more conservative.
Any comment:	If new and more accurate carbon fraction data become available, these can be used to estimate the net anthropogenic GHG emission reduction of the subsequent fixed baseline period.

Data Unit / Parameter:	ab
Data unit:	Mg/ha
Description:	Average biomass stock per hectare in the above- ground biomass pool of initial forest class icl in Mg/ha.
Source of data:	Average values for the above-ground biomass in Riparian dense tropical rainforest were taken from the following study: Nogueira, E.M. (2008), "Densidade da Madeira e Alometria de Arvores em Florestas do Arco do Desmatamento: Implicações para Biomassa e Emissão de Carbono a Partir de Mudanças no Uso da Terra na Amazônia Brasileira." 151 p, INPA, Manaus.
Value applied:	299.3
Justification of choice of data or description of measurement methods and procedures applied:	Following a literature search, the above-ground biomass values of this study were used as they were determined to accurately represent the values of the vegetation within the Project reference region.
Any comment:	If new and more accurate biomass stock data become available, these can be used to estimate

the net anthropogenic GHG emission reduction of the subsequent fixed baseline period.

Data Unit / Parameter:	bb
Data unit:	Mg/ha
Description:	Average biomass stock per hectare in the below- ground biomass pool of initial forest class icl in Mg/ha.
Source of data:	Average values for the below-ground biomass in Riparian dense tropical rainforest were taken from the following study: Nogueira, E.M. (2008), "Densidade da Madeira e Alometria de Arvores em Florestas do Arco do Desmatamento: Implicações para Biomassa e Emissão de Carbono a Partir de Mudanças no Uso da Terra na Amazônia Brasileira." 151 p, INPA, Manaus.
Value applied:	61.5
Justification of choice of data or description of measurement methods and procedures applied:	Following a literature search, the below-ground biomass values of this study were used as they were determined to accurately represent the values of the vegetation within the Project reference region.
Any comment:	If new and more accurate biomass stock data become available, these can be used to estimate the net anthropogenic GHG emission reduction of the subsequent fixed baseline period.

Data Unit / Parameter:	EI
Data unit:	%
Description:	Ex ante estimated effectiveness index
Source of data:	 Instituto Brasileiro de Geografia e Estatística (IBGE). Fundação de Amparo e Desenvolvimento da Pesquisa (FADESP), 'Comunidades Agroextrativistas do Rio Mapuá – Breves/PA, Diagnóstico Socio-Econômico', 2002. Instituto Amazônia Sustentável. Submission of proposal to Nike Mata no Peito Program. São Paulo, 2005. 32 p.
Frequency of monitoring/recording:	In each renewal of fixed baseline period.
Value applied:	17.85
Justification of choice of data or	Following a literature search, the calculation of

description of measurement methods and procedures applied:	the effectiveness index was based on the estimated deforestation activity due to the resident families in the baseline case compared to that in the project case.
Any comment:	Ex post monitoring of the project area will be done to determine deforestation rate and the project emissions.

Data Unit / Parameter:	DLF
Data unit:	%
Description:	Displacement Leakage Factor
Source of data:	 Fundação de Amparo e Desenvolvimento da Pesquisa (FADESP), 'Comunidades Agroextrativistas do Rio Mapuá – Breves/PA, Diagnóstico Socio-Econômico', 2002.
	 A. Ribeiro de Barros (2001), "Inventário Florestal Amostral para empresa Santana Madeiras Ltda. no Município de Breves – Pará."
	 Nogueira, E.M. (2008), "Densidade da Madeira e Alometria de Arvores em Florestas do Arco do Desmatamento: Implicações para Biomassa e Emissão de Carbono a Partir de Mudanças no Uso da Terra na Amazônia Brasileira." 151 p, INPA, Manaus.
Frequency of monitoring/recording:	In each renewal of fixed baseline period.
Value applied:	3.10
Justification of choice of data or description of measurement methods and procedures applied:	The DLF was calculated by assuming that the activity likely to be involved in leakage was timber extraction, as the other activities – palm heart and subsistence agriculture deforestation – are unlikely to travel significant distances.
Any comment:	Ex post monitoring of the leakage belt will be done to determine deforestation rate outside the project area and the leakage emissions and carbon stock decrease.

Data Unit / Parameter:	∆CBSLLKt
Data unit:	tCO ₂ e
Description:	Annual carbon stock changes in leakage management areas in the baseline case at year t
Source of data:	Remote sensing and GIS.
Frequency of monitoring/recording:	At each renewal of fixed baseline period.

VCS VERIFIED CARB®N STANDARD

PROJECT DESCRIPTION: VCS Version 3

Value applied:	0
Justification of choice of data or description of measurement methods and procedures applied:	Remote sensing and GIS.
Any comment:	N/A

Data Unit / Parameter:	EBBBSLPAt
Data unit:	tCO ₂ e
Description:	Sum of (or total) baseline non-CO ₂ emissions from forest fire at year t in the project area
Source of data:	 Remote sensing data and GIS, Supervisor reports.
Frequency of monitoring/recording:	At each renewal of fixed baseline period.
Value applied:	0
Justification of choice of data or description of measurement methods and procedures applied:	If forest fires occur, these non-CO ₂ emissions will be subject to monitoring and accounting, when significant.
Any comment:	N/A

4.2 **Data and Parameters Monitored**

Data Unit / Parameter:	ACPAt
Data unit:	На
Description:	Annual area within the Project Area affected by catastrophic events at year t.
Source of data:	Remote sensing data and GIS,Supervisor reports.
Description of measurement methods and procedures to be applied:	 The following sources will be monitored: INMET²⁰⁵ Periodic reports from area supervisor INPE²⁰⁶
Frequency of monitoring/recording:	At each time a catastrophic event occurs.
Value applied:	The value will be calculated ex-post each time a catastrophic event occurs, when significant.
Monitoring equipment:	Remote sensing and GIS
QA/QC procedures to be applied:	Best practices in remote sensing and GIS.
Calculation method:	Remote sensing and GIS

²⁰⁵ INMET. Instituto Nacional de Meteorologia. http://www.inmet.gov.br/portal/index.php?r=home/page&page=rede_estacoes_conv_graf
²⁰⁶ INPE. Instituto Nacional de Pesquisas Espaciais. http://www.inpe.br/queimadas/abasFogo.php

Any comment:

```
N/A
```

Data Unit / Parameter:	ABSLLKt
Data unit:	На
Description:	Annual area of deforestation within the leakage belt at year t.
Source of data:	Remote sensing and GIS.
Description of measurement methods and procedures to be applied:	Deforestation in the leakage belt area will be considered activity displacement leakage. Activity data for the leakage belt area will be determined using the same methods applied to monitoring deforestation activity data in the project area.
Frequency of monitoring/recording:	Annually
Value applied:	647.37 (Annual average deforestation in the leakage belt during the project crediting period)
Monitoring equipment:	Remote sensing and GIS
QA/QC procedures to be applied:	Best practices in remote sensing.
Calculation method:	Analysis of satellite images and maps.
Any comment:	Where strong evidence can be collected that deforestation in the leakage belt is attributable to deforestation agents that are not linked to the project area, the detected deforestation will not be attributed to the project activity, thus not considered leakage.

Data Unit / Parameter:	ABSLPAt
Data unit:	На
Description:	Annual area of deforestation in the project area at year t
Source of data:	Remote sensing and GIS.
Description of measurement methods and procedures to be applied:	Forest cover change due to deforestation is monitored through periodic assessment of classified satellite imagery covering the project area.
Frequency of monitoring/recording:	Annually
Value applied:	141.77 (Annual average deforestation in the project area during the project crediting period)
Monitoring equipment:	Remote sensing and GIS
QA/QC procedures to be applied:	Best practices in remote sensing.

Calculation method:	Analysis of satellite images and maps.
Any comment:	N/A

Data Unit / Parameter:	∆CADLKt
Data unit:	tCO ₂ e
Description:	Total decrease in carbon stocks due to displaced deforestation at year t
Source of data:	Remote sensing and GIS.
Description of measurement methods and procedures to be applied:	Deforestation in the leakage belt area will be considered activity displacement leakage. Activity data for the leakage belt area will be determined using the same methods applied to monitoring deforestation activity data in the project area.
Frequency of monitoring/recording:	Annually
Value applied:	2,841 (Annual average decrease in carbon stocks due to displaced deforestation during the project crediting period)
Monitoring equipment:	Remote sensing and GIS.
QA/QC procedures to be applied:	Best practices in remote sensing.
Calculation method:	Emissions from deforestation are estimated by multiplying the detected area of forest loss by the average forest carbon stock per unit area.
Any comment:	N/A

Data Unit / Parameter:	∆CPAdPAt
Data unit:	tCO ₂ e
Description:	Total decrease in carbon stock due to all planned activities at year t in the project area
Source of data:	Documents, remote sensing and GIS.
Description of measurement methods and procedures to be applied:	The planned activities in the project area that result in carbon stock decrease will be subject to monitoring, when significant.
Frequency of monitoring/recording:	Annually
Value applied:	0
Monitoring equipment:	Remote sensing and GIS
QA/QC procedures to be applied:	Best practices in remote sensing.
Calculation method:	Emissions from deforestation are estimated by multiplying the detected area of forest loss by the average forest carbon stock per unit area.

Any comment:

N/A

Data Unit / Parameter:	∆CPAiPAt
Data unit:	tCO ₂ e
Description:	Total increase in carbon stock due to all planned activities at year t in the project area
Source of data:	Documents, remote sensing and GIS.
Description of measurement methods and procedures to be applied:	The planned activities in the project area that result in carbon stock increase will be subject to monitoring, when significant.
Frequency of monitoring/recording:	Annually
Value applied:	0
Monitoring equipment:	Remote sensing and GIS
QA/QC procedures to be applied:	Best practices in remote sensing.
Calculation method:	Depends on the planned activity.
Any comment:	N/A

Data Unit / Parameter:	∆ CPSLK t
Data unit:	tCO ₂ e
Description:	Total annual carbon stock change in leakage management areas in the project case
Source of data:	 Activities report related to leakage prevention measures. Field assessment. Remote sensing and GIS.
Description of measurement methods and procedures to be applied:	The planned activities in leakage management areas that result in carbon stock decrease will be subject to monitoring, when significant.
Frequency of monitoring/recording:	Annually
Value applied:	0
Monitoring equipment:	Remote sensing and GIS
QA/QC procedures to be applied:	Best practices in remote sensing.
Calculation method:	Emissions from deforestation are estimated by multiplying the detected area of forest loss by the average forest carbon stock per unit area.
Any comment:	N/A

Data Unit / Parameter:	∆CUDdPAt
------------------------	----------

Data unit:	tCO ₂ e
Description:	Total actual carbon stock change due to unavoided unplanned deforestation at year t in the project area
Source of data:	Remote sensing and GIS.
Description of measurement methods and procedures to be applied:	Forest cover change due to unplanned deforestation is monitored through periodic assessment of classified satellite imagery covering the project area.
Frequency of monitoring/recording:	Annually
Value applied:	16,332 (Annual average decrease in carbon stocks due to unavoided unplanned deforestation during the project crediting period)
Monitoring equipment:	Remote sensing and GIS
QA/QC procedures to be applied:	Best practices in remote sensing.
Calculation method:	Emissions from deforestation are estimated by multiplying the detected area of forest loss by the average forest carbon stock per unit area.
Any comment:	N/A

Data Unit / Parameter:	EBBPSPAt
Data unit:	tCO ₂ e
Description:	Sum of (or total) actual non- CO_2 emissions from forest fire at year t in the project area
Source of data:	 Remote sensing data and GIS, Supervisor reports.
Description of measurement methods and procedures to be applied:	If forest fires occur, these non- CO_2 emissions will be subject to monitoring and accounting, when significant.
Frequency of monitoring/recording:	Areas burnt will be monitored every 5 years or if verification occurs on a frequency of less than every 5 years, examination will occur prior to any verification event.
Value applied:	0
Monitoring equipment:	Remote sensing and GIS
QA/QC procedures to be applied:	Best practices in remote sensing and GIS.
Calculation method:	If forest fires occur, these non-CO ₂ emissions will be subject to monitoring and accounting, when significant.
Any comment:	N/A

Data Unit / Parameter:	EgLKt
Data unit:	tCO ₂ e
Description:	Emissions from grazing animals in leakage management areas at year t.
Source of data:	 Activities report related to leakage prevention measures. Field assessment. Remote sensing data and GIS.
Description of measurement methods and procedures to be applied:	When significant, GHG emissions due activities implemented in the leakage management area will be monitored, such as emissions from grazing animals, fertilizer, or fuel use.
Frequency of monitoring/recording:	Annually
Value applied:	0
Monitoring equipment:	Remote sensing and GIS
QA/QC procedures to be applied:	Best practices in remote sensing and GIS.
Calculation method:	Described in the methodology, section 8.1.2: Ex ante estimation of CH ₄ and N2O emissions from grazing animals.
Any comment:	N/A

Data Unit / Parameter:	EADLKt
Data unit:	tCO ₂ e
Description:	Total ex ante increase in GHG emissions due to displaced forest fires at year t.
Source of data:	Remote sensing data and GIS.
Description of measurement methods and procedures to be applied:	When significant, GHG emissions due displaced forest fires will be monitored.
Frequency of monitoring/recording:	Annually
Value applied:	0
Monitoring equipment:	Remote sensing and GIS
QA/QC procedures to be applied:	Best practices in remote sensing and GIS.
Calculation method:	Analysis of satellite images and maps.
Any comment:	Where strong evidence can be collected that forest fires in the leakage belt is attributable to deforestation agents that are not linked to the project area, the detected deforestation will not be attributed to the project activity, thus not considered leakage.

Data Unit / Parameter:	RFt
Data unit:	%
Description:	Risk factor used to calculate VCS buffer credits
Source of data:	 VCS Non-Permanence Risk Report (v3.1)_Ecomapuá Amazon REDD Project, Remote sensing data and GIS, Supervisor report. Literature data.
Description of measurement methods and procedures to be applied:	All sources of data from the VCS Non- Permanence Risk Report will be used to measure the various risk factors.
Frequency of monitoring/recording:	Annually
Value applied:	34
Monitoring equipment:	Remote sensing and GIS.
QA/QC procedures to be applied:	Best practices in remote sensing and GIS.
Calculation method:	All the risk factors described in the VCS Non- Permanence Risk Report were assessed.
Any comment:	N/A

4.3 Description of the Monitoring Plan

This monitoring plan has been developed according to the VCS Methodology VM0015, version 1.1.

A map showing Cumulative Areas Credited within the project area shall be updated and presented to VCS verifiers at each verification event. The cumulative area cannot generate additional VCUs in future periods.

Revision of the baseline

The current baseline is valid for 10 years, i.e. through December 2012. The baseline will be reassessed every 10 years, and it will be validated at the same time as the subsequent verification. If an applicable sub-national or national jurisdictional baseline becomes available, the baseline will be reassessed earlier and it will be used for the subsequent period.

Information on agents, drivers and underlying causes of deforestation in the reference region will be collected at the end of each fixed baseline period, as these are essential for improving future deforestation projections and the design of the project activity. In addition, in the same frequency, the projected annual areas of baseline deforestation for the reference region will be revisited and eventually adjusted for the subsequent fixed baseline period.

Furthermore, the location of the projected baseline deforestation will be reassessed using the adjusted projections for annual areas of baseline deforestation and spatial data. All areas credited for avoided deforestation in past fixed baseline periods will be excluded from the revisited baseline projections as these areas cannot be credited again.

Monitoring Deforestation and Project Emissions

Forest cover change due to unplanned deforestation is monitored through periodic assessment of classified satellite imagery covering the project area. Emissions from deforestation are estimated by multiplying the detected area of forest loss by the average forest carbon stock per unit area.

The project boundary, as set out in the PD, will serve as the initial "forest cover benchmark map" against which changes in forest cover will be assessed over the interval of the monitoring period.

The entire project area has been demonstrated to meet the forest definition at the beginning of the crediting period. For subsequent monitoring periods, change in forest cover will be assessed against the preceding classified forest cover map marking the beginning of the monitoring interval. The resulting classified image is compared with the preceding classified image (forest cover benchmark map marking the start of the monitoring interval) to detect forest cover change over the monitoring interval, and subsequently becomes the updated forest cover benchmark map for the next monitoring interval. Thus, the forest benchmark map is updated at each monitoring event.

The increase or decrease in carbon stocks due to planned activities in the project area will also be monitored through documents and periodic assessment of classified satellite imagery covering the project area. In case of planned deforestation, emissions are estimated by multiplying the area of forest loss by the average forest carbon stock per unit area.

The results of monitoring shall be reported by creating *ex post* tables of activity data per stratum; per initial forest class *icl*; and per post-deforestation zone *z*, for the reference region, project area and leakage belt.

Monitoring of non-CO₂ emissions from forest fires

If forest fires occur, these non-CO₂ emissions will be subject to monitoring and accounting, when significant.

Monitoring Leakage

The most recent VCS guidelines on this subject matter shall be applied. Furthermore, as the leakage belt was determined using Option 1 (Opportunity cost analysis), the boundary of the leakage belt will have to be reassessed at the end of each fixed baseline period using the same methodological approaches used in the first period.

The calculation procedure for estimating leakage emissions in the project scenario will be done by monitoring the following sources of leakage:

- Carbon stock changes and GHG emissions associated with leakage prevention activities.

The carbon stock decrease due to leakage prevention measures, which will probably take place inside the leakage management area, will be monitored through documents and field assessment.

In areas undergoing carbon stock enhancement, the project conservatively assumes stable stocks and no biomass monitoring is conducted.

- Carbon stock decrease and increases in GHG emissions due to activity displacement leakage

Deforestation in the leakage belt area will be considered activity displacement leakage. Activity data for the leakage belt area will be determined using the same methods applied to monitoring deforestation activity data in the project area. Leakage will be calculated by comparing the *ex ante* and the *ex post* assessment. However, where strong evidence can be collected that deforestation in the leakage belt is attributable to deforestation agents that are not linked to the project area, the detected deforestation will not be attributed to the project activity, thus not considered leakage.

Monitoring of Natural Disturbance and catastrophic events

The carbon stock losses within the project area will be estimated as soon as possible after the natural event, e.g. uncontrolled forest fires and other catastrophic events.

Decreases in carbon stocks and increases in GHG emissions (e.g. in case of forest fires) due to natural disturbances (such as hurricanes, earthquakes, flooding, drought, fires or storms) or man-made events, including those over which the project proponent has no control (such as acts of terrorism or war), are subject to monitoring, when significant. If the area (or a sub-set of it) affected by natural disturbances or man-made events generated VCUs in past verifications, the total net change in carbon stocks and GHG emissions in the area(s) that generated VCUs will be estimated, and an equivalent amount of VCUs will be cancelled from the VCS buffer. No VCUs can be issued for the project until all carbon stock losses and increases in GHG emissions have been offset.

Updating Forest Carbon Stocks Estimates

If new and more accurate carbon stock data become available, these can be used to estimate the net anthropogenic GHG emission reduction of the subsequent fixed baseline period. For the current fixed baseline period, new data on carbon stocks will only be used if they are validated by an accredited VCS verifier. If new data are used in the current fixed baseline period, the baseline will be recalculated using the new data.

Methods for generating, recording, aggregating, collating and reporting data on monitored parameters

All data sources and processing, classification and change detection procedures will be documented and stored in a dedicated long-term electronic archive maintained by Ecomapuá Conservação Ltda.'s parent company: Bio Assets, at its office in São Paulo, Brazil.

Given the extended time frame and the pace of production of updated versions of software and new hardware for storing data, electronic files will be updated periodically or converted to a format accessible to future software applications, as needed.

All maps and records generated during project implementation will be stored and made available to VCS verifiers at verification for inspection. In addition, any data collected from ground-truth points (including GPS coordinates, identified land-use class, and supporting photographic evidence) will be recorded and archived.

Monitored data will be kept for two years after the end of the crediting period or the last issuance of carbon credits for this project activity, whichever occurs later. For this purpose, the authority for the registration, monitoring, measurement and reporting will be Mr. Lap Tak Chan. Monitored parameters are described in Section 4.2 and will be monitored with the frequency described in Table 67.

Quality Assurance/Quality Control

To ensure consistency and quality of results, spatial analysts carrying out the image processing, interpretation, and change detection procedures will strictly adhere to the steps detailed in the Methodology.

All of this reliable data, which will be collected and documented, will be used as a technical support tool for decision-making in order to improve project outcomes, and to adapt the project according to the current needs and realities. Project activities implemented within the project area must be consistent with the management plans of the PD.

The implementation of the project activity will be monitored by continuous monitoring activities using remote sensing techniques. Additionally, field studies will also be used. The land-use monitoring will be carried out with remote sensing methods, using images generated by INPE (PRODES)²⁰⁷ and LANDSAT 5, which will be subject to digital processing to perform the interpretation and classification of the land cover classes studied.

²⁰⁷ Available at: http://www.obt.inpe.br/prodes/index.php v3.0

The management structure will also rely on the local community to help monitor the area. There are three supervisors from within the project area communities, who deliver periodic reports to the project proponent, who is responsible for managing the monitoring, quality control and quality assessment procedures. All the monitored parameters will be checked with the frequency detailed in the Table 67, as requested in the VCS Methodology VM0015, version 1.1.

With the carbon credits income, in order to complement the monitoring of the project area and its surroundings, the project proponent intends to improve the remote sensing methods and data used, which meet the accuracy assessment requirements laid out in the methodology.

Ecomapuá Conservação Ltda. will also implement the sustainability report following the SOCIALCARBON methodology, which was developed by *Instituto Ecológica* and focus on implementing environmental and social activities within the project area. This methodology follows the SOCIALCARBON Guidelines available at: http://www.socialcarbon.org/documents/.

In addition, the SOCIALCARBON Reports will be available on Markit Environmental Registry /SOCIALCARBON Registry once the project is registered.

Procedures for handling internal auditing and non-conformities

The procedures for handling internal auditing and non-conformities are going to be established by both project developer and project proponent. All the necessary task-force and procedures will be in place to meet the highest levels of control.

Organizational structure, responsibilities and competencies

Monitoring will be done by the project proponent and outsourced to a third party having sufficient capacities to perform the monitoring tasks. To ensure the operation of the monitoring activities, the operational and managerial structure will be established according to Table 67.

For all aspects of project monitoring, Ecomapua Conservação Ltda. will ensure that data collection, processing, analysis, management and archiving are conducted in accordance with the monitoring plan. The authority for the registration, monitoring, measurement and reporting will be *Mr. Lap Tak Chan*.

Variables to be monitored	Responsible	Frequency
Revision of the baseline	Sustainable Carbon and Agência Verde or another external institutions qualified for the monitoring	Every 10 years
Monitoring Deforestation and Project Emissions	Ecomapuá Conservação Ltda. together with Sustainable Carbon and Agência Verde or another external institutions qualified for the monitoring	Prior to each verification
Monitoring of non-CO ₂ emissions from forest fires	Ecomapuá Conservação Ltda. together with Sustainable Carbon and Agência Verde or another external institutions qualified for the monitoring	Prior to each verification
Monitoring Leakage	Ecomapuá Conservação Ltda. together with	Prior to each verification

	Sustainable Carbon and Agência Verde or another external institutions qualified for the monitoring	
Monitoring of Natural Disturbance and catastrophic events	Ecomapuá Conservação Ltda.	When a natural event occurs
Updating Forest Carbon Stocks Estimates	Ecomapuá Conservação Ltda.	At least, every 10 years, only if necessary.

Table 67. Type of Monitoring and Party Responsible for Monitoring

5 ENVIRONMENTAL IMPACT

Deforestation and the associated GHG emissions is a global environmental issue but its effects, locally and regionally, are particularly concerning in developing countries, where economies and livelihoods are more closely linked to farming and use of natural resources. This REDD project will result in positive environmental benefits by conserving forest land leading to less deforestation than would have occurred in the baseline deforestation dynamics.

The Amazon Biome, the location of a hugely diverse fauna and flora, spreads over almost 50% of the Brazilian territory²⁰⁸. However, the uncontrolled deforestation is breaking up the forest in this habitat and, without necessary care, entire regions with local fauna and ancient habitats of unique species are at risk of complete destruction²⁰⁹. To quantify further, this biome holds the biggest variety of species in the world, and deforestation and degradation of tropical forests are the main causes of global biodiversity loss²¹⁰.

The Second Brazilian Inventory of Anthropogenic Greenhouse Gas Emissions²¹¹ indicates that in 2005, the major source of GHG emissions in Brazil was deforestation (more than 75% of the total emissions in the country), which mainly takes place in the Amazon (51.5% of the total emissions in the country) and *Cerrado* biomes (16.8%).

The conservation of the Amazon Rainforests is vitally important to humankind and the global environment, as well as the local environment, as these forests provide a wide range of critical ecosystem services. Some of them are detailed in the Table 68 below:

²⁰⁸ BRASIL. Ministério do Meio Ambiente (MMA). Projeto de monitoramento do desmatamento nos biomas brasileiros por satélite (PMDBBS). Brasília, 2012. Available at: http://siscom.ibama.gov.br/monitorabiomas/index.htm.

 ²⁰⁹ Margulis S. Causas do Desmatamento da Amazônia Brasileira. BANCO MUNDIAL. Brasil. July, 2003. Available at:
 http://siteresources.worldbank.org/BRAZILINPOREXTN/Resources/3817166-1185895645304/4044168-1185895685298/010CausasDesmatamentoAmazoniaBrasileira.pdf>.

²¹⁰ BRASIL. Ministério do Meio Ambiente (MMA). Inter-relações entre biodiversidade e mudanças climáticas: Recomendações para a integração das considerações sobre biodiversidade na implementação da Convenção-Quadro das Nações-Unidas sobre Mudança do Clima e seu Protocolo de Kyoto. Brasília, 2007. 220 p. (Biodiversidade, v.28). Available at: http://www.mma.gov.br/estruturas/chm/_arquivos/prefacio2_bio_28.pdf>.

²¹¹BRASIL. Ministério da Ciência, Tecnologia e Inovação (MCTI). Inventário Brasileiro de Emissões Antrópicas por Fontes e Remoções por Sumidouros de Gases de Efeito Estufa não Controlados pelo Protocolo de Montreal - Parte II da Segunda Comunicação Nacional do Brasil. Brasília, 2010. Available at: http://www.mct.gov.br/upd_blob/0214/214061.pdf>

Environmental Factor	Environmental Impact	Classification
Soil	Improvement of soil conditions and minimization of soil loss. Preservation of the nutrient cycles (e.g., phosphorous and nitrogen)	Positive
Air	Improvement of local air by filtering pollutants Positiv	
Climate	GHG emission reduction	Positive
Water/ hydric resources	Preservation of ground water quality	Positive
Water/ hydric resources	Water cycle renewal	Positive
Fauna	Biodiversity preservation	Positive
Flora	Biodiversity preservation	Positive

Table 68. Main environmental impacts generated by Ecomapuá Amazon REDD Project Activity

Therefore, the Ecomapuá Amazon REDD Project will bring a net positive environmental impact, also benefiting the local communities. Furthermore, as explained above, the Brazilian Government Ministry for the environment (Ministério do Meio Ambiente) included the Marajó Island in its 2003 survey of Brazil's 900 priority areas for conservation²¹². The entire island is classed within the ministry's highest priority category: "extremely high". Thus, the conservation of this private land located inside the Marajó Island is in accordance with the Brazilian Government proposal for conservation, helping to reach this goal, and encouraging the creation of new conservation projects and areas.

6 STAKEHOLDER COMMENTS

The main stakeholders considered in this project are:

- The local community living inside the project area;
- The local community surrounding the project area;
- The Municipalities of Breves, Curralinho and São Sebastião da Boa Vista;
- The Environmental Agencies of Breves and São Sebastião da Boa Vista Municipalities;
- The Agriculture Agency of Breves Municipality;
- The Educational Agency of Breves Municipality;
- The Chico Mendes Institute for Biodiversity Conservation (ICMBio);
- Amazon Oil (chemical-oil industry that operates in the area of extraction of Amazon oilseeds);

An explanatory letter was sent to the stakeholders asking their opinion about the project. Moreover, they were also invited to attend a local stakeholders' consultation in Breves Municipality. The local community was invited

²¹² MMA (2003): <u>http://www.mma.gov.br/estruturas/chm/_arquivos/maparea.pdf</u>

VCS VERIFIED CARB®N STANDARD

by one of the project supervisors who lives in the Bom Jesus community of the project area. This invitation letter is shown in Figure 33 below.

The local stakeholders' consultation was held on 07/02/2013 in the Environmental Agency of Breves Municipality (SEMMA). This presentation detailed a summary of the proposed activities of the project implementation and monitoring, including potential activities related to production of Amazon seed oils involving the local community. The auditor from TÜV Rheinland, who is conducting the validation of this project, was also present at this meeting.

The presentation raised several questions from the participants, which were promptly answered, resulting in great interest in understanding the challenges and benefits of this project. In addition, the following materials were distributed: Sustainable Carbon Folder and the Project Idea Note (PIN), both in Portuguese. Furthermore, a preliminary version of the VCS PD was available for local consultation.

Furthermore, the participants were informed that the period for requesting information and comments about the Ecomapuá Amazon REDD Project was open. The deadline for comments is 30 days from the presentation date, and it can be done by phone or e-mail, both of which were provided in the presentation and explanatory letters. If no answer is obtained within 30 days, it will be assumed that stakeholders have no objections to the project activity.

A minute of this meeting was made and registered at the SEMMA office. A copy of this document is shown in Figure 32 below.

BIO ASSETS	
	Breves, 8 de Feversiro, 2013.
ATA DE	REUNIÃO
Assunto: APRESENTACÃO da EcoMapuá Cons	ervação Ltda Projeto EcoMopuá Amazon REDD
Aŭs 7 das do més de Feverwiro de 2013, as 14 horas, Breves (SEMIMA), localizada na Av. Presidene Getélio rod/cão de pasos de efeito estuta propuzidos yelo de	foi revit2ado na Secretaria Municipal do Meio Ambiente de Vargas, SiN, Dreves, Pará, a apresentação do projeto de esmatamento não planojado: Projeto EcoMapuá Amazon Des Emissões por Desmatamento e Degredação (REDD)
A apresentação iniciou-se pontualmente e estavam pre lista de presença em anexol;:	sentes representantes das soyuiriles ertidades (conforme
Presidente da Associação Amorama (Rio Mapui) Conselheira da Associação Amorama (Rio Mapui) Vereaciur do Municipio de Breves Representante da Fazenda Born Jesus (Rio Mepuii) Representante da Fazenda Born Jesus (Rio Mepuii) Representante da Secretaria do Amiro (Rio Parausiú) Representante da Secretaria do Architera (SEMAGRI) Representante da Secretaria do Meio Ambiente Estade Secretario Municipal do Meio Ambiente de Preves (SEM Representante da Secretaria Municipal do Meio Ambiente Representante da Nativa Florestal Representante da Nativa Florestal Representante da Empresa EcoNapuá Representante da Empresa Sustalable Carbon Consultor da Valgiadora TUV Rheintand	no Mará (SEMA) MMA)
de Concepção do Projeto), e o representante da Expre onde será realizado o projeto). A apresentação da impientação e monitolamento do projeto, inclusive o po de ósos de sementes da amazônia com empresas já es Foj informado que o projeto encontre-se na fase de vi-	sa Sustainable Carbon, que elatorou o DCF (Docemente sa Enotrapuá Conservação Ltda. (proprietária das áreas tentou de forme resumida as atividades propostas de intericial de implantação de atividades ligedates a produção stateécidas no processamento e comercialização destas. Adidação, seguindo as regras do VCS (Ventied Carbon os para a gesação de créditos de cerbono por meio da
 resultando em grande interesse dos presentes no enten para es áreas no entorno (inclando a RESEX Mapuá e 	des participantes, que prontamente foram resuondidas, dimento dos desafios e honeficios daste projeto, inclusive RESEX Prazudidat, o Município de Breves como en todo intes materiols: Apresentação da Sustainekte Carbon e lar disponível para crusulta local o DCP.
informaram aos presentes que estaria aborto o periodo	on e Ecoliapus agrateveram a presença de todos e o para solicitação de informações e comentários sobre o O prazo para comentários e de 30 dias, a partir da data e-mail informados ao apresentação.
Breves, & de feverviro de 2013.	//
Narcelo Haddad Sustainable Carbon - Projetos Ambientais Ltás	553
Lap Crian EcoMapuá Conservação Lida.	C
Bin Assets Ativos Ambientais Ltda. Rua Dráusio, 193, Sala 3 Baino Butantă CEP 05511-010 São Paulo, SP Tel/Fox: (011) 3032-7059	FcoMaprá Conservação Ltda. Av. Gentil Bittencourt, 1390, Cj. B4 Bairre Nazaré CEP 66040-172 Belém, Pará Tel/Fax: (091; 3224-1763

Figure 32. Local stakeholders consultation minute registered at SEMMA office

A REAL PROPERTY AND A REAL
Breves, 25 de Janeiro, 2013.
ADAS
Ltda. – Projeto EcoMapuá
do um projeto de mitigação dos esmatamento não planejado. Este natamento e Degradação (REDD) ancia com as diretrizes e critérios
de forma voluntária, os impactos ento da Floresta Amazônica.
er apresentado ao VCS (Verified para a geração de créditos de
stá entrando em contato com as reiro, 2013, na Fazenda Santo Providenciaremos transporte do através de um cartaz postado no
nentários sobre o relatório técnico de 30 dias, a partir da presente ico ou em papel.
_
EcoMapuá Conservação Ltda. w. Gentil Bitencourt, 1390, Cj. B4 Bairro Nazaré CEP 66040-172 Belém, Pará Tel/Fax: (091) 3224-1763 www.ecomapua.com.br

Figure 33. Explanatory letter sent to the stakeholders

ANNEXES

ANNEX I – PROJECT AREA CONTOUR COORDINATES

2 632642.805 9847990.678 103 583912.853 9873905.282 204 590678.316 986204.712 104 583976.433 987362.232 105 590602.317 986627.573 306 553712.2 4 622455.316 9852104.654 105 584712.105 987284.330 05 59030.668 986642.944 308 55470.1 5 621325.954 9851700.623 107 58472.105 9872244.302 05 599030.863 9866472.878 308 55473.0 6 619135.448 9851651.523 109 58472.555 987204.729 11 598925.986 986697.466 312 555826.8 10 617726.57 9851445.075 111 58472.555 987204.729 213 58744.317 986452.078 314 556811.0 11 60772.856 983465.608 113 58447.565 986733.324 215 58774.714 315 555874.1 13 60043.237 9863451.022 117 584473.44 9866937					Pro	oject Area Con	tour C	oordinates				
1 623329.756 9872637.285 102 583779.603 9873967.233 203 590690.833 9866203.854 304 553623.3 2 632642.805 984790.678 103 683976.453 987385.232 205 59050.231 9866227.593 305 55371.2 4 622455.316 9852106.654 105 584109.803 987323.531 206 590303.686 9866428.444 307 553871.0 5 62193.4141 985190.206 106 58477.154 987284.303 0850243.533 986647.857 307 5543451.7 6 619135.448 985175.508 108 58472.105 987224.7679 101 589572.048 986660.419 311 55531.4 9 61734.410 985158.288 110 58472.545 987224.767 211 589576.43 986670.413 311 55631.4 1 60712.675 985145.075 111 58427.545 98672.477 213 58674.135 5131 556317.4 15			1			-					1	
2 632642.805 9847990.678 103 583912.953 9873905.282 204 599678.316 9886208.94 305 553712.2 3 623068.866 9852041.712 104 683976.433 98739223.231 005 590502.317 9866327.593 306 7553871.0 4 622455.316 9852106.654 105 58471.754 987234.330 206 59023.663 9866428.444 308 55472.05 6 621325.954 9851700.623 107 58472.059 987224.729 210 589673.034 9866610.259 315 55474.00 8 619135.448 9851651.523 109 58472.055 987224.729 211 589675.048 986670.466 312 555826.8 10 616775.675 9851445.075 111 58472.059 98724.729 213 58671.133 316 55641.1 12 59677.768 983445.075 113 58447.954 986937.322 121 58967.147 143 555675.2 14	Point			Point	Х					-		Y
3 623069.826 985204.1712 104 583976.453 967332.232 205 590502.317 986327.593 306 5537122 4 622465.316 985206.654 105 58410.800 9872290.831 206 590308.680 986442.918 308 554275 6 621325.954 9851705.061 108 584775.55 987221.402 208 59023.3633 9866472.913 309 554436.1 7 619726.504 9851755.906 108 584725.05 987221.402 108 58927.44 986670.419 311 555326.8 10 61673.675 985144.075 111 584922.059 9871765.232 212 58947.942 986670.419 313 556631.1 11 6072.556 98314.0205 9867942.22 213 58776.70 986374.7174 315 55676.7 12 596777.78 985345.92 318 556371.47 115 56776.73 986351.47 116 57676.13 116 567268.3 114 <		623329.756			583779.603	9874267.233		-	9866203.854	-	553490.042	9882274.599
4 622455.316 9852106.654 105 58440.803 987238.531 206 590308.686 986442.814 307 553074.0 5 62189.1414 9951901.206 100 584471.754 997290.81 207 590244.588 986642.918 306 554027.5 309 554473.61 6 621325.644 9851705.023 105 58472.05 9872271.480 206 59030.433 986647.941 311 55537.0 55537.0 55377.0 553877.048 9866870.419 311 55537.6 8 619736.675 9851445.075 111 584827.355 987204.729 211 589675.048 986681.559 313 556631.1 11 607126.599 943120.258 112 58447.64 214 589675.043 314 55631.1 12 596787.768 9883465.088 113 584754.754 986939.572 215 58974.7174 316 557265.3 13 600177.231 985028.024 115 584764.754 216		632642.805		103		9873905.282			9866208.984		553623.392	9882617.500
5 621891.414 9851901.206 106 584471.754 987290.881 207 590244.588 986642.918 308 554203. 7 619726.504 9851755.096 105 584732.105 987229.679 210 589303.433 9866610.259 310 554735.1 8 619135.448 9851651.523 100 584729.305 987229.679 210 58952.048 9866907.466 312 55532.8 9 617346.140 9851445.075 111 58492.605 9871765.322 212 58947.4317 986432.798 313 55631.1 16 60173.567 9851445.075 111 58447.555 987029.125 213 58774.813.17 986351.047 313 55631.1 12 596787.768 9838465.088 113 584479.55 986593.474 216 5924.014 986531.047 115 556071.7 115 560077.231 98530.42 115 58447.033 986552.27 125 5574.431 986552.295 318 55611.1		623069.826	9852041.712	104	583976.453	9873632.232	205	590502.317	9866327.593	306	553712.293	9882700.050
6 621325.954 9851700.623 107 584775.555 997211.480 208 590233.633 9866457.857 309 554436.1 7 619725.504 9851651.523 100 584775.555 9872211.480 209 589902.433 9866610.259 311 555372.4 9 617346.140 9851651.523 100 584725.055 987204.722 11 598925.966 9866907.466 312 555326.8 10 616773.875 9851445.075 111 584922.055 98710282.125 213 58947.442 9866937.466 312 555876.1 11 50777.86 9843465.060 113 584795.05 9869847.627 214 587360.377 986351.047 316 55677.1 13 600403.370 985028.98 114 584457.954 986936.474 216 589246.014 986483.866 319 55691.1 16 601282.666 9851431.502 117 58457.354 986850.227 215 58934.614 9864962.15 320	4	622455.316	9852106.654	105	584109.803	9873238.531	206	590308.686	9866428.444	307	553871.043	9882808.000
7 619726.504 9851755.906 108 564776.555 9872711.480 209 589803.433 9866610.259 310 554773.0 8 619135.448 985155.23 109 56472.355 987244.729 211 55852.44 986670.419 311 555312.4 9 61736.75 9851446.075 111 54422.605 9871765.328 212 588547.942 9866807.466 312 556641.1 11 607128.596 943120.258 112 554814.655 9870292.125 213 58744.317 986432.798 314 556971.1 12 59677.768 98344.65.008 113 54475.605 986923.023 217 589312.433 986555.104 316 557263.3 14 600172.31 985020.136 116 58457.354 9869230.02 216 589312.433 9865356.255 318 558711.2 15 601727.679 986350.422 119 584864.55 986852.222 220 58944.614 9864398.55 310 558	5	621891.414	9851901.206	106	584471.754	9872990.881	207	590244.588	9866442.918	308	554207.593	9882814.350
8 619135.448 9851651.523 109 584782.905 9972279.679 210 589572.048 9966070.419 311 555312.4 9 61734.6140 9851582.688 110 584827.355 9972044.729 211 589625.986 996607.466 312 55582.83 10 616773.675 985142.0258 112 589474.657 987222.52 123 58748.317 986372.798 315 55681.0 12 596787.768 9838465.608 113 58479.560 9869873.324 216 587776.377 986374.7174 315 55671.2 13 600017.231 9850234.10 116 584547.954 986893.572 218 589316.814 986538.165 319 558041.2 16 601282.666 9851431.502 117 58457.354 9868672.872 219 58944.614 9864583.806 321 559265.0 16 602051.569 9853806.422 119 584463.455 986462.072 221 589474.164 9864723.164 321	6	621325.954	9851700.623	107	584732.105	9872844.830	208	590233.633	9866457.857	309	554436.194	9882738.150
9 617346.140 9851588.268 110 564827.355 9872044.729 211 589625.986 9866907.466 312 555826.8 10 616773.675 985145.075 111 564814.655 9870725.328 212 585847.342 9866813.359 313 556631.1 11 667128.596 9843120.258 112 58641.4655 9870747.174 315 556671.1 12 596777.768 9826845.060 113 584795.605 986937.324 215 587776.797 9863551.047 316 557611.2 15 600172.231 985034.110 116 58452.904 986953.672 218 569316.6141 986555.255 318 558424.0 16 601222.666 98131.502 117 56485.455 986852.222 220 58961.163 986450.587 320 55873.61 16 602205.791 985306.642 119 58484.457 986852.222 220 58961.16 986421.589 323 559541.6 16 602037	7	619726.504	9851755.906	108	584776.555	9872711.480	209	589903.433	9866610.259	310	554779.095	9882484.150
10 616773.675 9851445.075 111 584922.605 9871765.328 212 58974.942 9866811.359 313 556341.1 11 607128.566 9843120.258 112 584814.655 9870292.125 213 587449.317 9864377.174 315 556976.1 12 59678.7768 9833465.608 113 584795.605 9869236.232 214 58776.797 9863351.047 316 55576.797 9863551.047 316 55561.047 316 5567176.797 9865351.047 316 556011.2 15 600177.231 985034.110 116 584528.904 9869238.023 217 58914.614 9865358.165 319 558424.0 16 601282.666 985130.642 119 584573.354 9868935.72 218 58914.614 986473.3164 321 55976.38 17 601471.150 9852809.642 119 58454.55 986852.222 220 58974.98 324 55976.38 18 60203.609 985309.642	8	619135.448	9851651.523	109	584782.905	9872279.679	210	589572.048	9866760.419	311	555312.496	9882211.099
11 607128.596 9843120.258 112 584814.655 9870292.125 213 58748.317 9864632.798 314 556811.0 12 59678.768 9833465.608 113 584795.605 9869847.624 214 58776.97 986374.174 315 556976.1 13 600409.370 9850328.028 115 58776.797 986355.104 316 557268.3 14 600312.331 985034.110 116 584549.94 9869238.023 217 589312.433 986555.295 318 558715.1 16 60177.231 985034.110 116 584573.354 9868672.872 219 58944.614 9864508.575 322 55875.1 18 602057.91 985380.623 121 585456.55 986850.422 221 589801.158 986450.587 322 55976.38 20 602037.609 985380.424 120 58546.505 986622.072 223 58945.6220 9864421.589 323 55976.38 21 6002037.64	9	617346.140	9851588.268	110	584827.355	9872044.729	211	589625.986	9866907.466	312	555826.847	9882172.999
12 596787.768 9838465.608 113 584795.605 9869847.624 214 587360.377 9863747.174 315 555976.1 13 600409.370 9850258.196 114 58468.604 986973.324 215 587776.797 986351.047 316 557683.3 14 600312.331 9850232.986 115 584547.954 9869538.023 217 589312.433 9865555.295 318 558011.2 16 601282.666 9851431.502 117 584573.354 986850.222 219 599494.614 986428.816 319 558735.1 16 601282.666 985380.642 120 585195.655 986850.422 221 589840.118 9864508.587 322 55976.8 19 602037.609 9853806.332 121 58646.506 986852.072 223 58974.956 9864421.509 323 55976.8 21 602037.609 9853864.128 122 58686.77 986652.072 223 589876.516 9864401.629 325	10	616773.675	9851445.075	111	584922.605	9871765.328	212	589547.942	9866811.359	313	556341.198	9882452.399
13 600499.370 9850258.196 114 584668.604 9869733.324 215 587776.797 9863551.047 316 55768.3 14 600312.331 9850232.986 115 584547.954 986936.474 216 589246.014 986558.295 318 55011.2 15 60172.266 9851431.502 117 584573.54 9868938.572 218 589316.41 9865358.165 319 558424 17 601471.150 9852970.136 118 584700.354 986852.222 220 58961.44 9864996.215 320 558735.1 18 602051.536 985380.642 120 585195.655 986852.222 220 58974.855 986421.589 321 559374.6 20 602037.609 985380.64128 122 585864.506 9868622.072 224 589565.015 9864412.943 324 560124.2 23 601620.434 9854264.750 124 58608.657 986832.072 224 589877.058 9862981.904 322	11	607128.596	9843120.258	112	584814.655	9870292.125	213	587448.317	9864632.798	314	556811.099	9882788.950
14 600312.331 9850232.986 115 584547.954 9869536.474 216 589246.014 9865488.80 317 557611.2 15 600177.231 9850344.110 116 584528.904 9869238.023 217 589312.433 986555.295 318 558011.2 16 601282.666 9851431.502 117 584473.354 9868939.572 218 589346.814 986496.215 320 558735.1 17 601471.150 9853809.642 120 589195.655 9868501.422 221 589801.164 9864723.164 321 559763.8 19 602057.869 9853806.353 121 585481.406 986852.222 222 58974.985 9864421.589 323 559763.8 21 602053.845 9853806.4128 122 58956.20 9864296.555.9986.20 9864129.483 324 560290.9 22 601824.844 9853929.297 123 586867.57 986852.472 225 58887.058 9862863.554 326 562126.0	12	596787.768	9838465.608	113	584795.605	9869847.624	214	587360.377	9863747.174	315	556976.199	9883214.401
15 600177.231 9850344.110 116 584528.904 9869238.023 217 583312.433 9865555.295 318 558011.2 16 601282.666 9851431.502 117 584573.354 9868939.572 218 589316.814 9865358.165 319 558424.0 17 601471.150 9852970.136 118 58470.555 9868552.222 20 589494.614 9864723.164 321 559250.0 18 602053.753 9853809.642 119 584865.455 9868501.422 221 589749.866 9864421.589 322 559763.8 21 602053.845 9853806.353 121 585481.406 986852.272 222 589749.866 9864421.589 322 559763.8 22 601824.884 985392.927 123 585686.77 986822.072 224 589565.015 9864412.483 324 560290.9 22 601824.884 985392.927 123 586084.657 986632.017 221 588870.58 586276.610 586276	13	600409.370	9850258.196	114	584668.604	9869733.324	215	587776.797	9863551.047	316	557268.300	9883627.152
16 601282.666 9851431.502 117 584573.354 9868939.572 218 58316.814 9865358.165 319 558424.0 17 601471.150 9852970.136 118 584700.354 986852.222 20 589621.614 9864723.164 321 555205.0 19 602051.536 985380.642 120 585195.655 986852.222 222 589749.856 9864421.589 323 559763.8 20 602037.609 9853806.353 121 585481.406 9868622.072 223 589568.20 9864421.589 323 559763.8 21 602053.845 9853829.297 123 585868.757 9868622.072 223 589586.20 986491.629 325 561421.2 23 601620.434 9854243.511 125 58608.6507 986820.472 225 58887.058 986283.554 326 56212.60 24 60142.649 9854343.511 125 58608.6507 9868317.271 226 588818.973 9862862.154.02 98652	14	600312.331	9850232.986	115	584547.954	9869536.474	216	589246.014	9865488.880	317	557611.200	9883798.602
17 601471.150 9852970.136 118 584700.354 9868672.872 219 589494.614 9864996.215 320 558735.1 18 602058.791 9853809.642 119 584865.455 9868552.222 220 589621.614 986472.3164 321 55926.50 19 602051.536 9853806.622 120 585195.655 9868501.422 221 589801.158 986402.877 328 55976.38 20 6002037.609 9853806.128 122 58564.500 9868622.072 223 58956.220 9864129.483 324 560290.9 325 561421.2 326 561421.2 323 560465.07 9868622.072 225 58877.058 986283.554 326 562126.0 24 601420.434 9854264.750 124 586065.607 9868622.072 225 58871.058 9862346.146 327 562970.6 25 60121.6.871 9854967.708 128 58619.0070 228 56958.076 986528.1907 329 56347.97 <td>15</td> <td>600177.231</td> <td>9850344.110</td> <td>116</td> <td>584528.904</td> <td>9869238.023</td> <td>217</td> <td>589312.433</td> <td>9865555.295</td> <td>318</td> <td>558011.251</td> <td>9883951.002</td>	15	600177.231	9850344.110	116	584528.904	9869238.023	217	589312.433	9865555.295	318	558011.251	9883951.002
18 602058.791 9853809.642 119 584865.455 9868552.222 220 589621.614 9864723.164 321 559205.0 19 602051.536 9853809.642 120 585195.655 9868501.422 221 589801.158 9864508.587 322 559541.6 20 602037.609 9853806.353 121 58564.506 986852.222 222 589749.856 9864421.589 323 559763.8 21 602053.845 9853864.128 122 58564.577 986822.072 224 589566.159 9864091.629 325 561421.2 23 601620.434 9854264.750 124 58608.457 9868372.21 225 58817.058 986234.6146 327 562970.6 24 601476.871 985493.3511 125 58608.66.07 986802.321 227 578480.262 9865319.007 328 56347.9 25 601216.871 9854967.708 128 58619.007 228 569528.706 9872561.950 329 56347.9	16	601282.666	9851431.502	117	584573.354	9868939.572	218	589316.814	9865358.165	319	558424.002	9884027.203
19 602051.536 9853809.642 120 585195.655 9868501.422 221 589801.158 9864508.587 322 559541.6 20 602037.609 9853806.353 121 585481.406 986852.222 222 589749.856 9864421.589 323 559763.8 21 602053.845 9853864.128 122 585646.506 986822.072 223 589586.220 9864129.483 324 560290.9 22 601824.864 9853929.297 123 585868.757 9868520.472 225 58887.058 9862863.554 326 562126.0 24 601453.469 9854343.511 125 586084.657 986837.271 226 588318.973 9862863.554 326 562126.0 25 601216.871 9854967.708 128 586129.107 986780.070 228 569528.706 9872561.950 329 563479.7 26 600270.887 9855238.977 129 586619.058 9867117.170 229 56954.0.06 986774.0456 3	17	601471.150	9852970.136	118	584700.354	9868672.872	219	589494.614	9864996.215	320	558735.153	9884122.453
20 602037.609 9853806.353 121 585481.406 9868552.222 222 589749.856 9864421.589 323 559763.8 21 602053.845 9853864.128 122 585646.506 9868622.072 223 589586.20 9864129.483 324 560290.9 22 601824.884 9853929.297 123 585868.757 9868520.472 225 588877.058 9862863.554 326 562126.0 24 601453.469 9854343.511 125 586085.607 986802.321 227 578480.262 9865291.907 328 563479.7 26 600876.456 9854702.028 127 586129.107 9867860.070 228 569524.068 986139.049 330 563877.1 27 600370.887 985528.977 129 58618.068 986717.170 229 569540.086 986139.049 330 563877.4 30 599971.388 9855180.012 131 58722.910 9866885.18 232 566454.377 9868727.062 333 </td <td>18</td> <td>602058.791</td> <td>9853809.642</td> <td>119</td> <td>584865.455</td> <td>9868552.222</td> <td>220</td> <td>589621.614</td> <td>9864723.164</td> <td>321</td> <td>559205.053</td> <td>9884332.003</td>	18	602058.791	9853809.642	119	584865.455	9868552.222	220	589621.614	9864723.164	321	559205.053	9884332.003
21 602053.845 9853864.128 122 585646.506 9868622.072 223 589586.220 9864129.483 324 560290.9 22 601824.884 9853929.297 123 585868.757 9868622.072 224 589565.015 9864091.629 325 561421.2 23 601620.434 9854264.750 124 586084.657 986822.072 225 58877.058 9862863.554 326 562126.0 24 601453.469 9854343.511 125 586084.657 9868082.321 227 578480.262 9865291.907 328 56347.9.7 26 600876.456 9854702.028 127 586129.107 9867860.070 228 569540.086 9868139.049 330 56387.1 28 600270.887 9855306.991 130 586941.909 9866901.218 231 56654.535 9869208.641 332 564774.0 30 599971.388 9855180.012 131 587526.110 9867599.969 233 56184.6.42 987537.783	19	602051.536	9853809.642	120	585195.655	9868501.422	221	589801.158	9864508.587	322	559541.604	9884503.454
22 601824.884 9853929.297 123 585868.757 9868622.072 224 589565.015 9864091.629 325 561421.2 23 601620.434 9854264.750 124 58608.457 9868520.472 225 588877.058 9862863.554 326 562126.0 24 601453.469 9854343.511 125 58608.6507 9868082.321 227 578480.262 9865291.907 328 563479.7 26 600876.456 9854702.028 127 586129.107 9867860.070 228 569528.706 9872561.950 329 563479.7 27 600398.179 9854967.708 128 586319.608 986717.170 229 569540.086 9868139.049 330 56387.3 28 600270.887 9855306.991 130 586941.909 9866901.218 231 56654.535 9869208.641 332 564774.0 30 599971.366 9855076.413 132 58752.10 9867599.999 233 561845.642 9872537.783 34	20	602037.609	9853806.353	121	585481.406	9868552.222	222	589749.856	9864421.589	323	559763.855	9884617.754
23 601620.434 9854264.750 124 586008.457 9868520.472 225 588877.058 9862863.554 326 562126.0 24 601453.469 9854343.511 125 586084.657 9868317.271 226 588318.973 9862346.146 327 552970.6 25 601216.871 9854283.393 126 586065.607 986802.321 227 578480.262 9865291.907 328 563467.9 26 600376.456 9854702.028 127 586129.107 986750.070 228 569528.706 9872561.950 329 56347.97 27 600398.179 9854967.708 128 586319.608 986717.170 229 569540.086 9868139.049 330 563872.3 29 600132.536 9855306.991 130 586941.909 9866901.218 231 566545.357 9869208.641 332 56477.40 30 599971.388 985510.012 131 587526.110 9867959.969 233 561854.642 9873767.556	21	602053.845	9853864.128	122	585646.506	9868622.072	223	589586.220	9864129.483	324	560290.906	9884662.204
24601453.4699854343.511125586084.6579868317.271226588318.9739862346.146327562970.625601216.8719854298.393126580065.6079868082.321227578480.2629865291.907328563467.926600876.4569854702.028127586129.1079867860.070228569528.7069872561.950329563479.727600398.1799854967.708128586319.6089867517.170229569540.0869868139.049330563857.128600270.8879855238.977129586618.0589867117.119230568771.4019867340.456331563872.329600132.5369855306.991130586941.9099866901.218231566584.5359869208.641332564774.030599971.3889855180.012131587322.9109866888.518232566454.3779868727.062333565104.231599797.6669855076.413132587526.1109867390.169233561854.6429873767.556335565910.63359938.4319855727.493134587805.511986730.169235562493.3739873958.978336566685.33459938.9289855858.585135588091.2619867352.069238561900.2629875320.108339566667.335599374.8579855939.955136588497.6629867352.06923856190.26298	22	601824.884	9853929.297	123	585868.757	9868622.072	224	589565.015	9864091.629	325	561421.208	9884598.704
25601216.8719854298.393126586065.6079868082.321227578480.2629865291.907328563467.926600876.4569854702.028127586129.1079867860.070228569528.7069872561.950329563479.727600398.1799854967.708128586319.6089867517.170229569540.0869868139.049330563877.128600270.8879855238.977129586618.0589867117.119230568771.4019867340.456331563872.329600132.5369855306.991130586941.9099866901.21823156654.5359869208.641332564774.030599971.3889855180.012131587322.910986688.518232566454.3779868727.06233356556.632599797.6669855076.413132587526.110986739.969233561854.642987367.556335565910.63359938.4319855241.127133587691.210986739.169235562493.3739873958.978336566285.33459938.9289855858.565135588091.261986735.2.6923856190.262987339.53333756654.635599374.857985593.9.95513658497.662986735.4.1923756134.786987422.059338566666.336599438.588985609.424138589037.413986722.069238561900.262987532.0108 </td <td>23</td> <td>601620.434</td> <td>9854264.750</td> <td>124</td> <td>586008.457</td> <td>9868520.472</td> <td>225</td> <td>588877.058</td> <td>9862863.554</td> <td>326</td> <td>562126.059</td> <td>9884547.904</td>	23	601620.434	9854264.750	124	586008.457	9868520.472	225	588877.058	9862863.554	326	562126.059	9884547.904
26600876.4569854702.028127586129.1079867860.070228569528.7069872561.950329563479.727600398.1799854967.708128586319.6089867517.170229569540.0869868139.049330563872.328600270.8879855238.977129586618.0589867117.119230568771.4019867340.456331563872.329600132.5369855306.991130586941.9099866901.218231566545.559869208.641332564774.030599971.3889855180.012131587322.9109866888.518232566454.377986727.062333565104.23159977.6669855076.413132587526.1109867059.969233561854.6429872537.783334565656.632599587.8349855241.127133587691.2109867244.119234563486.800987367.556335565910.633599388.4319855727.49313458705.5119867383.819236562493.373987395.533337566545.635599374.8579855939.955136588497.6629867352.06923856190.262987532.0108339566667.33659948.588985603.9380137588796.113986724.4119239561181.320987542.09340566841.937599478.171985069.442138589037.413986724.4119239561181.320987532.01	24	601453.469	9854343.511	125	586084.657	9868317.271	226	588318.973	9862346.146	327	562970.611	9884211.353
27600398.1799854967.708128586319.6089867517.170229569540.0869868139.049330563857.128600270.8879855238.977129586618.0589867117.119230568771.4019867340.456331563872.329600132.5369855306.991130586941.9099866901.218231566584.5359869208.641332564774.030599971.3889855180.012131587322.9109866888.518232566454.3779868727.062333565104.231599797.6669855076.413132587526.1109867059.969233561854.6429872537.783334565656.632599587.8349855241.127133587691.2109867390.169235562493.3739873958.978336566285.333599388.4319855727.493134587805.5119867383.819236562245.0819873935.533337566546.6334599383.9289855858.585135588091.2619867352.069238561900.2629875320.108339566667.337599374.8579856039.380137588796.1139867244.119239561181.320987674.209340566841.938599746.7039856150.650139589310.464986715.519241561002.1669878113.853342568818.640600171.0239856150.650139589310.464986715.51924156102.1699	25	601216.871	9854298.393	126	586065.607	9868082.321	227	578480.262	9865291.907	328	563467.944	9884052.411
28600270.8879855238.977129586618.0589867117.119230568771.4019867340.456331563872.329600132.5369855306.991130586941.9099866901.218231566584.5359869208.641332564774.030599971.3889855180.012131587322.9109866888.518232566454.3779868727.062333565104.231599797.6669855076.413132587526.1109867059.969233561854.6429872537.783334565656.632599587.8349855241.127133587691.2109867390.169235562493.3739873958.978336566285.333599388.4319855727.493134587805.5119867380.169235562493.3739873958.978336566285.334599383.9289855858.585135588091.2619867358.419237561334.7869874429.059338566666.33559937.4579855939.955136588497.6629867352.069238561900.2629875320.108339566667.336599438.5889856039.380137588796.113986724.119239561181.320987642.209340566841.937599478.1719856150.650139589310.4649867123.469240561765.9009877608.926341568557.239599895.0239856158.219140589462.8649867015.519241561002.1569	26	600876.456	9854702.028	127	586129.107	9867860.070	228	569528.706	9872561.950	329	563479.714	9884064.100
29600132.5369855306.991130586941.9099866901.218231566584.5359869208.641332564774.030599971.3889855180.012131587322.9109866888.518232566454.3779868727.062333565104.231599797.6669855076.413132587526.1109867059.969233561854.6429872537.783334565656.632599587.8349855241.127133587691.210986724.119234563486.8609873767.556335565910.633599388.4319855727.493134587805.5119867390.169235562493.3739873958.978336566285.334599383.9289855858.555135588091.2619867383.819236562245.0819873935.533337566546.6635599374.8579855939.955136588497.6629867352.069238561900.2629875320.108339566667.336599438.5889856039.380137588796.1139867123.469240561765.90098764.209340566841.938599746.7039856150.650139589310.4649867123.469240561705.9009877608.926341568557.239599895.0239856158.219140589462.8649867015.519241561002.1569878113.853342568818.640600171.023985646.614141589632.9999866926.584242560250.2749	27	600398.179	9854967.708	128	586319.608	9867517.170	229	569540.086	9868139.049	330	563857.179	9884026.530
30599971.3889855180.012131587322.9109866888.518232566454.3779868727.062333565104.231599797.6669855076.413132587526.1109867059.969233561854.6429872537.783334565666.632599587.8349855241.127133587691.210986724.119234563486.8609873767.556335565910.633599388.4319855727.493134587805.5119867390.169235562493.3739873958.978336566285.334599383.9289855858.585135588091.2619867383.819236562245.0819873935.533337566645.635599374.8579855939.955136588497.6629867352.069238561900.2629875320.108339566667.336599478.171985609.442138589037.4139867123.469240561765.9009877608.926341568557.238599746.7039856150.650139589462.8649867015.519241561002.1569878113.853342568818.640600171.0239856486.614141589632.9999866926.584242560250.2749878421.038343569596.841600250.826985656.416142589971.263986748.763243560123.9889878462.836344568888.842600275.9889856559.995143591673.6139871475.274244560109.84098	28	600270.887	9855238.977	129	586618.058	9867117.119	230	568771.401	9867340.456	331	563872.313	9884027.203
31599797.6669855076.413132587526.1109867059.969233561854.6429872537.783334565656.632599587.8349855241.127133587691.2109867244.119234563486.8609873767.556335565910.633599388.4319855727.493134587805.5119867390.169235562493.3739873958.978336566285.334599383.9289855858.585135588091.2619867383.819236562245.0819873935.533337566545.635599374.8579855939.955136588497.6629867358.419237561334.7869874429.059338566666.336599438.5889856039.380137588796.113986732.069238561900.2629875320.108339566667.337599478.1719856069.442138589037.4139867244.119239561181.3209875674.209340566841.938599746.7039856150.650139589310.4649867123.469240561705.9009877608.926341568557.239599895.0239856158.219140589422.8649867015.519241561002.1569878113.853342568818.640600171.0239856486.614141589632.9999866926.584242560250.2749878219.038343569596.841600250.826985656.416142589971.2639867848.763243560123.988	29	600132.536	9855306.991	130	586941.909	9866901.218	231	566584.535	9869208.641	332	564774.015	9884078.003
32 599587.834 9855241.127 133 587691.210 9867244.119 234 563486.860 9873767.556 335 565910.6 33 599388.431 9855727.493 134 587805.511 9867390.169 235 562493.373 9873958.978 336 566285.3 34 599388.431 9855727.493 134 587805.511 9867383.819 236 562245.081 9873935.533 337 566545.6 35 599374.857 9855939.955 136 588497.662 9867352.069 238 561900.262 9875320.108 339 566666.3 36 599478.171 9856069.442 138 589037.413 9867244.119 239 561181.320 9875674.209 340 566841.9 37 599478.171 9856150.650 139 589310.464 9867123.469 240 561765.900 9877608.926 341 568557.2 39 599895.023 9856158.219 140 58942.864 9867015.519 241 561002.156 9878113.853 <	30	599971.388	9855180.012	131	587322.910	9866888.518	232	566454.377	9868727.062	333	565104.215	9884046.253
33 599388.431 9855727.493 134 587805.511 9867390.169 235 562493.373 9873958.978 336 566285.3 34 599383.928 9855858.585 135 588091.261 9867383.819 236 562245.081 9873958.978 337 566545.6 35 599374.857 9855939.955 136 588497.662 9867358.419 237 561334.786 9874429.059 338 566666.3 36 599438.588 9856039.380 137 588796.113 9867352.069 238 561900.262 9875320.108 339 566667.3 37 599478.171 9856069.442 138 589037.413 9867123.469 240 561765.900 9877608.926 341 568557.2 39 599895.023 9856150.650 139 589310.464 986715.519 241 561022.156 9878113.853 342 568818.6 40 600171.023 9856486.614 141 589632.999 9866926.584 242 560250.274 987842.936 <t< td=""><td>31</td><td>599797.666</td><td>9855076.413</td><td>132</td><td>587526.110</td><td>9867059.969</td><td>233</td><td>561854.642</td><td>9872537.783</td><td>334</td><td>565656.666</td><td>9884046.253</td></t<>	31	599797.666	9855076.413	132	587526.110	9867059.969	233	561854.642	9872537.783	334	565656.666	9884046.253
34599383.9289855858.585135588091.2619867383.819236562245.0819873935.533337566545.635599374.8579855939.955136588497.6629867358.419237561334.7869874429.059338566666.336599438.5889856039.380137588796.1139867352.069238561900.2629875320.108339566667.337599478.1719856069.442138589037.4139867244.119239561181.3209875674.209340566841.938599746.7039856150.650139589310.4649867123.469240561765.9009877608.926341568557.239599895.0239856158.219140589462.8649867015.519241561002.1569878113.853342568818.640600171.0239856486.614141589632.9999866926.584242560250.274987842.9.038343569596.841600250.8269856566.416142589971.263986748.763243560123.9889878462.836344568888.842600275.9889856559.995143591673.6139871475.274244560109.8409878490.150345569711.8	32	599587.834	9855241.127	133	587691.210	9867244.119	234	563486.860	9873767.556	335	565910.667	9884128.803
35 599374.857 9855939.955 136 588497.662 9867358.419 237 561334.786 9874429.059 338 566666.3 36 599438.588 9856039.380 137 588796.113 9867352.069 238 561900.262 9875320.108 339 566666.3 37 599478.171 9856069.442 138 589037.413 9867244.119 239 561181.320 9875674.209 340 566841.9 38 599746.703 9856150.650 139 589310.464 9867123.469 240 561765.900 9877608.926 341 568557.2 39 599895.023 9856158.219 140 589422.864 9867015.519 241 56102.156 9878113.853 342 568818.6 40 600171.023 9856486.614 141 589632.999 9866926.584 242 560250.274 98784219.038 343 569596.8 41 600250.826 9856556.416 142 589971.263 9867348.763 243 560123.988 9878462.836	33	599388.431	9855727.493	134	587805.511	9867390.169	235	562493.373	9873958.978	336	566285.318	9884363.753
36 599438.588 9856039.380 137 588796.113 9867352.069 238 561900.262 9875320.108 339 566667.3 37 599478.171 9856069.442 138 589037.413 9867244.119 239 561181.320 9875374.209 340 566841.9 38 599746.703 9856150.650 139 589310.464 9867123.469 240 561765.900 9877608.926 341 568557.2 39 599895.023 9856158.219 140 589462.864 9867015.519 241 561002.156 9878113.853 342 568818.6 40 600171.023 9856486.614 141 589632.999 9866926.584 242 560250.274 9878219.038 343 569596.8 41 600250.826 9856566.416 142 589971.263 9867848.763 243 560123.988 9878462.836 344 568888.8 42 600275.988 9856559.995 143 591673.613 9871475.274 244 560109.840 9878490.150	34	599383.928	9855858.585	135	588091.261	9867383.819	236	562245.081	9873935.533	337	566545.668	9884630.454
37 599478.171 9856069.442 138 589037.413 9867244.119 239 561181.320 9875674.209 340 566841.9 38 599746.703 9856150.650 139 589310.464 9867123.469 240 561765.900 9877608.926 341 566857.2 39 599895.023 9856158.219 140 58942.864 9867015.519 241 561002.156 9878113.853 342 568818.6 40 600171.023 9856486.614 141 589632.999 9866926.584 242 560250.274 9878219.038 343 569596.8 41 600250.826 9856566.416 142 589971.263 9867848.763 243 560123.988 9878462.836 344 568888.8 42 600275.988 9856559.995 143 591673.613 9871475.274 244 560109.840 9878490.150 345 569711.8	35	599374.857	9855939.955	136	588497.662	9867358.419	237	561334.786	9874429.059	338	566666.318	9884884.454
38 599746.703 9856150.650 139 589310.464 9867123.469 240 561765.900 9877608.926 341 568557.2 39 599895.023 9856158.219 140 589462.864 9867015.519 241 561002.156 9878113.853 342 568818.6 40 600171.023 9856486.614 141 589632.999 9866926.584 242 560250.274 9878219.038 343 569596.8 41 600250.826 9856566.416 142 589971.263 9867488.763 243 560123.988 9878462.836 344 568888.8 42 600275.988 9856559.995 143 591673.613 9871475.274 244 56019.840 9878490.150 345 569711.8	36	599438.588	9856039.380	137	588796.113	9867352.069	238	561900.262	9875320.108	339	566667.324	9884886.936
39 599895.023 9856158.219 140 589462.864 9867015.519 241 561002.156 9878113.853 342 568818.6 40 600171.023 9856486.614 141 589632.999 9866926.584 242 560250.274 9878219.038 343 569596.8 41 600250.826 9856566.416 142 589971.263 9867848.763 243 560123.988 9878462.836 344 56888.8 42 600275.988 9856559.995 143 591673.613 9871475.274 244 56019.840 9878490.150 345 569711.8	37	599478.171	9856069.442	138	589037.413	9867244.119	239	561181.320	9875674.209	340	566841.948	9884679.795
40 600171.023 9856486.614 141 589632.999 9866926.584 242 560250.274 9878219.038 343 569596.8 41 600250.826 9856566.416 142 589971.263 9867848.763 243 560123.988 9878462.836 344 568888.8 42 600275.988 9856559.995 143 591673.613 9871475.274 244 56019.840 9878490.150 345 569711.8	38	599746.703	9856150.650	139	589310.464	9867123.469	240	561765.900	9877608.926	341	568557.231	9882607.990
41 600250.826 9856566.416 142 589971.263 9867848.763 243 560123.988 9878462.836 344 568888.8 42 600275.988 9856559.995 143 591673.613 9871475.274 244 560109.840 9878490.150 345 569711.8	39	599895.023	9856158.219	140	589462.864	9867015.519	241	561002.156	9878113.853	342	568818.643	9881739.762
41 600250.826 9856566.416 142 589971.263 9867848.763 243 560123.988 9878462.836 344 568888.8 42 600275.988 9856559.995 143 591673.613 9871475.274 244 560109.840 9878490.150 345 569711.8	40	600171.023	9856486.614	141	589632.999	9866926.584	242	560250.274	9878219.038	343	569596.859	9878457.323
42 600275.988 9856559.995 143 591673.613 9871475.274 244 560109.840 9878490.150 345 569711.8	41		9856566.416	142	589971.263	9867848.763	243	560123.988	9878462.836	344	568888.890	9876155.052
				143						345	569711.836	9875488.459
	43		9856586.459	144			245	560046.705		346	569522.546	9874955.988
				145				-		347	569526.079	9873583.029
										-	570649.961	9873993.395
											570876.354	9875557.245
								-		-	573638.526	9876482.647
											574373.959	9878286.839
											574377.170	9878293.141

50	500004 000	0057400 405		507400 700	000007.010	050	550404 404	0070500.004	050	57447740	0070000 4 44
50	599881.906	9857499.195	151	597129.722	9860907.910	252	559181.194	9878560.891	353	574417.746	9878293.141
51	599708.524	9857318.424	152	596958.272	9860939.660	253	559157.729	9878553.832	354	574484.228	9878299.731
52	601521.854	9859377.242	153	596488.371	9860888.862	254	559136.036	9878577.487	355	574517.354	9878293.141
53	602031.027	9860255.190	154	596431.221	9860965.063	255	559047.400	9878674.142	356	574527.634	9878293.141
54	602818.343	9860398.051	155	596221.671	9860965.063	256	559004.371	9878721.064	357	574528.517	9878293.551
55	602657.934	9860970.274	156	596050.221	9860946.014	257	558875.821	9878861.243	358	574705.434	9878375.691
56	603057.689	9860949.376	157	595459.671	9861250.817	258	558611.850	9878851.835	359	574972.135	9878502.692
57	603369.868	9861328.681	158	595415.222	9861460.368	259	558608.459	9878857.346	360	575219.786	9878540.792
58	606098.818	9863212.831	159	595408.872	9861638.169	260	558595.452	9878864.642	361	575391.236	9878547.142
59	605665.036	9864540.678	160	595383.473	9861828.670	261	558462.102	9879105.943	362	575594.436	9878534.442
60	606450.262	9866680.129	161	595275.524	9862012.821	262	558462.102	9879213.893	363	575924.637	9878439.191
61	607999.706	9866279.955	162	595129.474	9862235.072	263	558471.121	9879211.075	364	576172.287	9878318.541
62	609070.751	9868087.419	163	595135.825	9862323.973	264	558433.908	9879306.190	365	576419.938	9878058.191
63	608744.863	9869278.454	164	595123.126	9862558.924	265	558385.902	9879328.193	366	576527.888	9877785.140
64	612780.132	9869272.460	165	595154.876	9862711.324	266	557630.436	9879445.848	367	576743.789	9877391.439
65	613775.008	9869168.297	166	595173.927	9862990.725	267	557474.441	9879342.567	368	577042.239	9877099.339
66	614161.423	9869272.125	167	594970.728	9863187.577	268	557302.550	9879235.875	369	577645.490	9876889.788
67	623329.756	9872637.285	168	594665.928	9863308.228	269	557298.237	9879241.509	370	577975.691	9876858.038
68	582990.891	9882568.262	169	594227.777	9863384.430	270	557166.699	9879163.093	371	578210.641	9876889.788
69	580920.328	9880311.598	170	593586.427	9863435.233	271	556944.449	9879175.793	372	578261.442	9877048.539
70	579841.965	9877622.662	171	593281.626	9863454.284	272	556963.499	9879251.993	373	578331.292	9877131.089
71	579808.295	9877602.621	172	592913.326	9863479.686	273	556855.549	9879283.743	374	578528.142	9877124.739
72	579638.960	9877517.954	173	592722.825	9863371.736	274	556728.549	9879226.593	375	578680.542	9877162.839
73	579437.876	9877539.121	174	592449.774	9863136.786	275	556391.998	9879264.693	376	578886.776	9877264.010
74	579268.542	9877560.288	175	592233.873	9863111.387	276	556124.948	9879307.612	377	578667.934	9877279.831
75	579241.991	9877395.540	176	592043.373	9863149.488	277	556124.849	9879310.780	378	578099.078	9877551.031
76	579486.994	9877334.289	177	591978.051	9863175.049	278	556088.714	9879310.786	379	577907.254	9877689.938
77	579814.267	9877235.116	178	591970.676	9863185.105	279	556073.188	9879315.930	380	577748.504	9877961.138
78	579963.864	9877195.735	179	591805.284	9863350.500	280	556036.397	9879321.843	381	577576.525	9878358.015
79	580255.346	9877137.439	180	591631.823	9863576.404	281	555718.897	9879429.793	382	577431.004	9878576.297
80	580579.196	9877188.239	181	591478.532	9863693.391	282	555280.746	9879544.094	383	577100.274	9878834.268
81	580972.897	9877353.339	182	591305.071	9863749.867	283	554798.145	9879690.144	384	576584.334	9878966.561
82	581233.248	9877505.740	183	591171.949	9863770.038	284	554563.194	9879829.844	385	576081.623	9878979.792
83	581391.998	9877581.940	184	590849.231	9863794.243	285	554359.994	9879874.294	386	575817.038	9878814.427
84	581582.498	9877581.940	185	590732.245	9863810.379	286	554264.744	9880007.645	387	575479.693	9878662.292
85	581861.899	9877531.140	186	590441.104	9864143.116	287	554163.143	9880280.695	388	575162.192	9878860.731
86	581963.499	9877410.489	187	590441.799	9864145.202	288	553642.442	9880515.646	389	574765.316	9879297.296
87	582109.549	9877277.139	188	590357.086	9864262.188	289	553445.592	9880604.546	390	574295.679	9879839.696
88	582185.749	9876978.688	189	590264.305	9864423.548	290	553261.442	9880502.946	391	574183.232	9880137.353
89	582204.799	9876711.988	190	590195.728	9864601.044	291	552835.991	9880534.696	392	574143.545	9880481.313
90	582198.449	9876438.937	191	590147.321	9864734.166	292	552651.840	9880617.246	393	574150.160	9880845.117
91	582166.699	9876172.237	192	590143.288	9865000.410	293	552543.890	9880775.996	394	574090.630	9881096.472
92	582192.099	9875943.636	193	590191.696	9865210.178	294	552379.855	9880788.147	395	574037.713	9881440.432
93	582293.700	9875816.636	194	590416.709	9865352.464	295	552380.144	9880795.734	396	573812.817	9881632.256
94	582509.600	9875619.786	195	590608.280	9865378.351	296	552518.490	9880782.346	397	573723.745	9881696.728
95	582674.700	9875600.736	196	590811.480	9865505.351	297	552613.740	9880839.496	398	573729.393	9881715.753
96	582833.451	9875429.285	197	590815.441	9865523.172	298	552766.141	9880922.046	399	573705.073	9881710.242
97	582973.151	9875092.735	197	590869.407	9865549.031	290	552950.291	9881049.047	400	573591.108	9881684.418
98	583011.251	9874806.984	190	590925.884	9865774.934	300	553147.141	9881201.447	400	572870.075	9881521.035
99			200			300			401		
100	583163.651 583449.402	9874584.734 9874508.534	200	590925.884 590849.239	9865924.192 9866097.654	301	553236.042 553343.992	9881379.247 9881601.498	402	573288.146 573369.290	9881883.028 9881953.287
100			201	-			-	9882033.299	403		
101	583627.202	9874445.033	202	590696.153	9866197.161	303	553363.042	3002033.299	404	578599.287	9886481.684
			т		roject area				400	582990.891	9882568.262

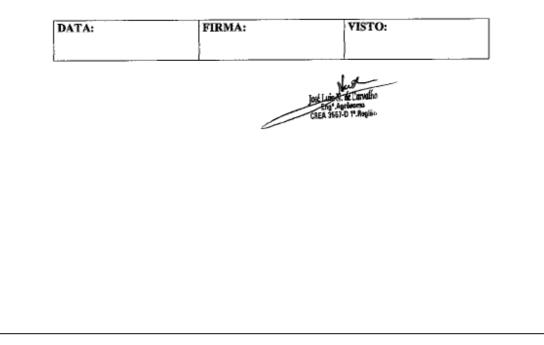
Table 69. Project area contour coordinates

٦

ANNEX II – LAND REGISTRY DOCUMENTS

Fazenda Bom Jesus

P	MEMORIAL DESCRITIVO	
GLEBA: IMÓVEL: FAZENDA BOM JI	MUNICIPIO: BREVES ESUS	UF: PA
ÁREA (ha): 14,529,7371	PERÍMETRO (m): 64.352,65	LOTE N°:
I	DESCRIÇÃO DO PERÍMETRO	
Partindo do marco N-1	de coordenadas geográficas de 01°02'2	8.19" S e 50°24'02.30"
	131°53'21" e distância de 289,60 m d	
-	3" e distância de 2.692,68 m chega-se a	
	tância de 901,39 m chega-se ao marco l	
	3.369,17 m chega-se ao marco N-5,	,
	2.404,16 m chega-se ao marco N-6,	
130°25'34" e distância de	1.064,05 m chega-se ao marco N-7,	deste com azimute de
196°26'06" e distância de 5:	37,59 m chega-se ao N-8, deste com az	zimute de 179°54'58" e
distância de 6.820,01 m chej	ga-se ao marco N-9, deste com azimute	223°54'19" e distância
de 1.110,36 m chega-se ao	marco N-10, deste com azimute de 310	0°37'23" e distância de
2.872,16 m chega-se ao mar	co N-11, deste com azimute 194°34'27	" e distância de 516,62
m chega-se ao marco N-12,	deste com azimute de 309°39'32" e d	istância de 6.001,11 m
chega-se ao marco N-13, des	ste com azimute 53°21'16" e distância o	de 2.044,02 m chega-se
ao marco N-14, deste com	azimute 281°25'16" e distância de 1.	010,00 m chega-se ao
marco N-15, deste com azim	nute de 265°I 5'24" e distância de 250,8	0 m chega-se ao marco
N-16, deste com azimute de	e 300°57'50" e distância de 10.049,57 n	n chega-se ao marco N-
17, deste com azimute de 32	°44'07" e distância de 998,60 m chega∹	se ao marco N-18, deste
com azimute 297°36'47" e	distância de 733,55 m chega-se ao n	narco N-19, deste com
	cia de 2.107,72 m chega-se ao marco N	-20, deste com azimute
azimute 22-18 22 e distanc	na de Briter, re en enega se no marecero	


Figure 34. Specifications of Fazenda Bom Jesus property (part. 1)

278°20'38" e distância de 758,02 m chega-se ao marco N-22, deste com azimute de 332°51'01" e distância de 438,29 m chega-se ao marco N-23, deste com azimute 241°49'17" e distância de 317,00 m chega-se ao marco N-24, deste com azimute de 312°16'25" e distância de 297,32 m chega-se ao marco N-25, deste com azimute de 254°14'56" e distância de 405,22 m chega-se ao marco N-26, deste com azimute de 308°09'26" e distância de 356,09 m chega-se ao marco N-27,localizado ma margem direita do rio Mapuá-mirim, deste descendo pela referida margem num percurso de 7.219,82m até o marco N-35, localizado na confluência com o rio Mapuá, deste subindo pela margem esquerda do rio Mapuá, num percurso de 16.633,13m, chega-se ao marco N-1. Ponto inicial da descrição deste perímetro.

CONFRONTAÇÕES

NORTE: Margem esquerda do rio Mapuá LESTE: Posse Bom - Tá SUL: Terras a Quem de Direito OESTE: Rio Mapuá-Mirim

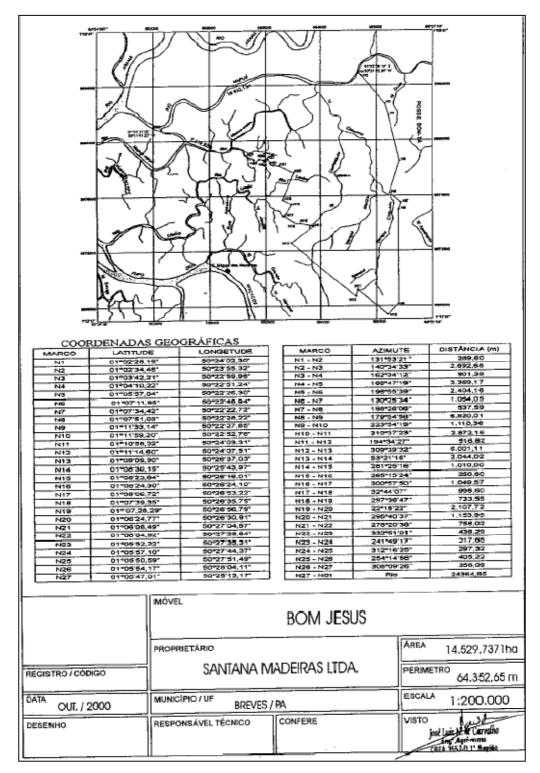
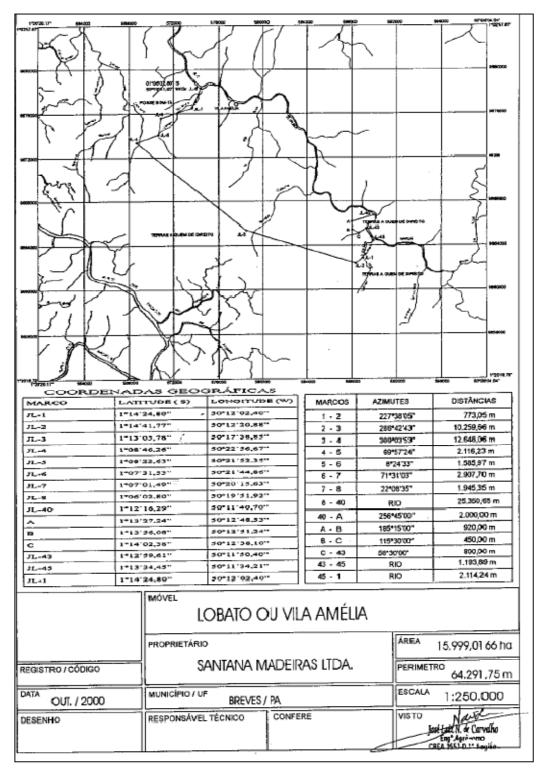


Figure 36. Specifications of Fazenda Bom Jesus property (part. 3)

Fazenda Vila Amélia

MEMORIAL DESCRITIVO MUNICIPIO: BREVES GLEBA: UF: PA IMÓVEL: FAZENDA LOBATO OU VILA AMÉLIA PERÍMETRO (m): 64.291,75 LOTE Nº: ÁREA (ha): 15.999,0166 DESCRIÇÃO DO PERÍMETRO Partindo do marco JL-08 de coordenadas geográficas de 01°06'02,80" S e 50º19'51,92" WGr,localizado na margem esquerda do rio Mapuá, deste subindo o referido rio por uma distancia de 25.350,65m até chegarão marco JL-40, deste com azimute de 256°45'00" e distância de 2.000,00 m chega-se ao marco -A, deste com azimute 185°1500" e distância de 920,00 m chega-se ao marco -B, deste com azimute de 115°30'00" e distância de 450,00 m chega-se ao marco JL-20, deste com azimute 250º00'00" e distância de 600,00 m chega-se ao marco -C, deste com azimute de 58°30'00" e distância de 800,00 m chega-se ao marco JL-43, localizado na margem esquerda do Rio Mapuá, deste, seguindo pelo referido no por uma distancia de 1.193,89m até chegar a foz do igarapé São Remédio, marco JL-45, deste subindo pelo referido igarapé por uma distancia de 2.114,24m, chega-se ao marco JL-1, deste com azimute de 227º38'05" e distância de 773,05m chega-se ao marco JL-2, deste com azimute de 286º42'43" e distância de 10.259,66 m chega-se ao JL-3, deste com azimute de 309º03'53" e distância de 12.648,06 m chega-se ao marco JL-4, deste com azimute 69°57'24" e distância de 2.116,23 m chega-se ao marco JL-5, deste com azimute de 8°24'33" e distância de 1.585,97 m chega-se ao marco JL-6, deste com azimute 71º31'03" e distância de 2.907,70 m chega-se ao marco JL-7, deste com azimute de 22º08'35" e distância de 1.945,35 m chega-se ao marco JL-8. Ponto inicial da descrição deste perímetro. 🖌


Figure 37. Specifications of Fazenda Vila Amélia property (part. 1)

	CONFRONTA	· · · · · ·				
NORTE: Margem esquerda do rio Mapuá						
LESTE: Terras a Quem de Direito e igarapé São Remédio						
SUL: Terras a Quer	n de Direito					
OESTE: Posse Bo	n – Ta					
DATA:	FIRMA:	VISTO:				
		1 and				
		Jest Luit A. & Carvalho				
		CREA 3557-9 1".Região				

Figure 38. Specifications of Fazenda Vila Amélia property (part. 2)

Figure 39. Specifications of Fazenda Vila Amélia property (part. 3)

Fazenda Brasileiro

MEMORIAL DESCRITIVO

NOME DO PROPRIETÁRIO: ECOMAPUÁ CONSERVAÇÃO LTDA (SANTANA MADEIRAS LTDA)

NOME DO IMÓVEL: SANTA ISABEL / BRASILEIRO

ÁREA: 3.524,00 ha.

MUNICÍPIO: BREVES

PERÍMETRO: 16.934,50 m.

ESTADO: PARÁ

DESCRIÇÃO DO PERÍMETRO

Partindo do marco M-1, de Coordenada Geográfica, Latitude - 01°12'19"s e Longitude -50°11'40" wgr situado na margem direita do Rio Mapuá, deste segue confrontando com as terras da ROBCO madeiras com azimute 193°15'00" e uma distância de 1.800,00m até o marco M-2 de Coordenada Geográfica Latitude - 01º11'43"s e Longitude - 50º11'27"wgr, deste segue confrontando ainda com as terras da ROBCO Madeiras com azimute 36º05'00" e uma distância de 4.000,00m até o marco M-3, de Coordenada Geográfica Latitude - 01°09'45"s e Longitude -50°10'32"wgr, deste segue confrontando com as terras de Quem de Direito com azimute 128°30'00" e uma distância de 1.240,00m até o marco M-4, de Coordenada Geográfica Latitude - 01º10'03"s e Longitude - 50°09'58"wgr, deste segue confrontando com as terras de Quem de Direito com azimute 58°30'00" e uma distância de 600,00m até o marco M-5, de Coordenada Geográfica Latitude - 01°09'50"s e Longitude - 50°09'42" wgr deste segue confrontando com as terras de Quem de Direito com azimute 162°00'00" e uma distância de 4.390,00m até o marco M-6 de Coordenada Geográfica Latitude - 01°11'55"s e Longitude - 50°08'34"wgr, deste segue confrontando com as terras de Quem de Direito com azimute 192°00'00" e uma distância de 4.572,00m até o marco M-7, de Coordenada Geográfica Latitude - 01°15'08"s e Longitude - 50°07'10"wgr deste segue confrontando com as terras de Quem de Direito com azimute 192º00'00" e uma distância de 246,00m até o marco M-8 de Coordenada Geográfica Latitude - 01°15'15"s e Longitude -50°07'30" deste segue confrontando com as terras de Quem de Direito com azimute 210°30'00" e uma distância de 86,50m até o marco M-9 de Coordenada Geográfica Latitude - 01º08'50"s e Longitude - 50°07'14" deste segue-se margeando o Rio Mapuá até o marco M-1; ponto inicial da descrição deste perimetro.

LIMITES E CONFRONTAÇÕES

NORTE: QUEM DE DIREITO. LESTE: QUEM DE DIREITO. SUL: RIO MAPUÁ. OESTE: ROBCO MADEIRAS.

Resp. Técnico:

Artemas Hiberio de caltros Júnior Engenterio Piartutei CREA-10.809-0

Belém-PA, 10 de setembro de 2004.

Figure 40. Specifications of Fazenda Brasileiro property (part. 1)

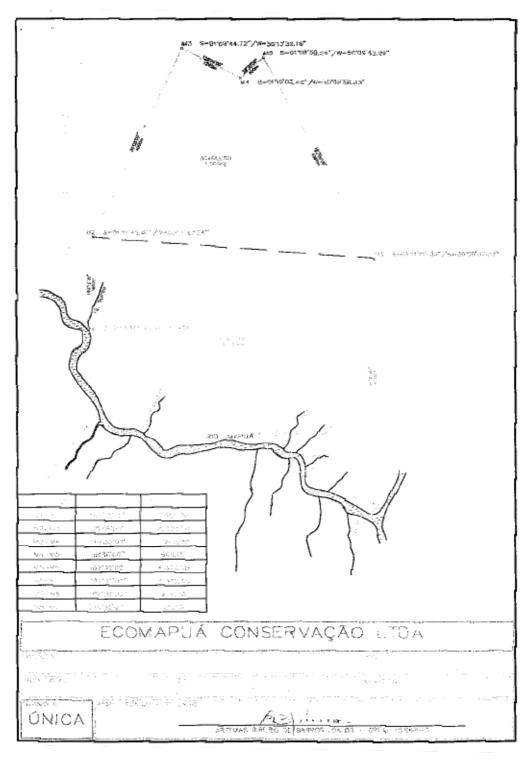


Figure 41. Specifications of Fazenda Brasileiro property (part. 2)

Fazenda São Domingos

MEMO	RIAL DESCRITIVO
NOME DO PROPRIETÁRIO: ECOMA MADEIRAS LTDA).	PUÁ CONSERVAÇÃO LTDA (SANTANA
NOME DO IMÓVEL; SÃO DOMINGO	s
ÁREA: 5.386,450 fra.	PERÍMETRO: 30.729,115 m.
MUNICÍPIO: BREVES	ESTADO: PARÁ
DESCRI	CÃO DO PERÍMETRO
50°20'12.6"wgr situado na margem direita uma distância de 550,00m até o marco M- Longitude - 50°20'40.33"wgr; deste segue 49°15'00" e uma distância de 7.000,00m - 01°01'40.12"s e Longitude - 50°17'35.33"v de 6.100,00m até o marco M-4, de Coorde 50°15'12.88"wgr deste segue confrontando e uma distância de 3.360,00m até o marco Longitude - 50°16'20.35"wgr; deste seg azimute 208°05'00 " e uma distância de 3 Latitude - 01°06'28.33"s e Longitude - 50	anada Geográfica, Latitude – $01^{\circ}04'14.35''s$ e Longitude – do Rio Mapuá, deste segue-se com azimute $87''30'00''$ e 2, de Coordenada Geográfica Latitude – $01^{\circ}04'20.54''s$ e confrontando com terrés de Quem de direito com azimute até o marco M-3 de Coordenada Geográfica Latitude – vgr; deste segue com azimute $136''30'00''$ e uma distância enada Geográfica Latitude – $01''03'46.40''s$ e Longitude – o com terras de Quem de direito com azimute $220''30''00'''$ M-5 de Coordenada Geográfica Latitude – $01''05''00''s$ e ue confrontando com terras de Quem de direito com 3.590,00m até o marco M-6 de Coordenada Geográfica 9''16'54.40''wgr, deste segue confrontando com a margem 37''28'' e uma distância de 7.200,00m até o marco M-1
	E CONTROUTI CÁTO
	E CONFRONTAÇÕES ° ?
NORTE: QUEM DE DIREITO. LESTE: QUEM DE DIREITO.	
SUL; . MARGEM DIREITA DO RIO M OESTE: QUEM DE DIREITO.	IAPUÁ.
	Belém-PA, 30 de dezembro de 2002.
A Structure	lánjar
Resp. Técnico: Artemas Ribeito de Barros. Engenheuro Finiteari CREA-19.069-0	

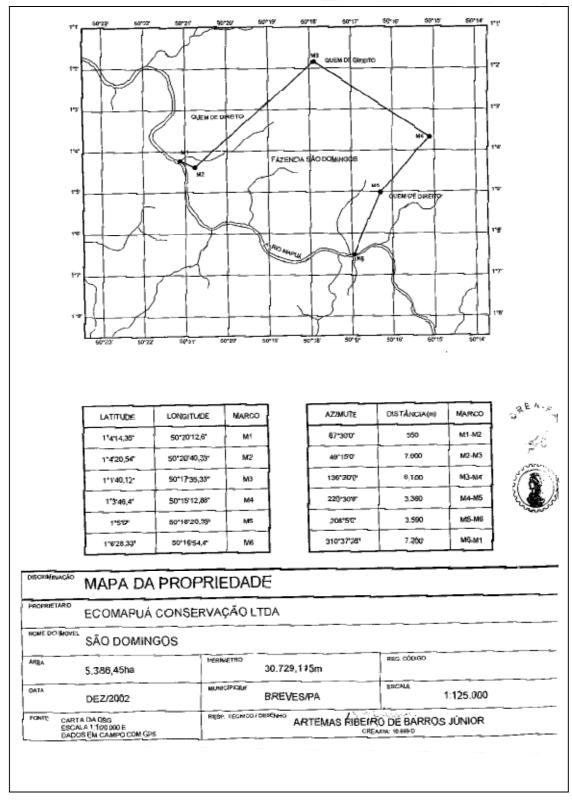


Figure 43. Specifications of Fazenda São Domingos property (part. 2)

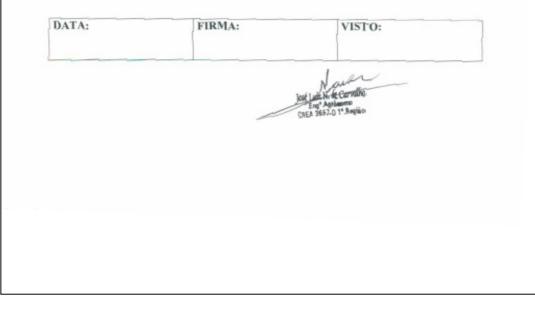
Fazenda Lago do Jacaré

MEMORIAL DESCRITIVO

GLEBA: IMÓVEL: FAZENDA LAGO DO JACARĖ ÁREA (ha): 42.856,1281 MUNICIPIO: BREVES UF: PA

PERIMETRO (m): 95.316,84 LOTE Nº:

DESCRIÇÃO DO PERÍMETRO


Partindo do marco JL-17 de coordenadas geográficas de 01º10'10.80" S e 49°56'07,64" WGr, deste com azimute de 160° 30'00" e distância de 19.650,00 m chega-se ao marco JL-18, deste com azimute 266º00'00" e distância de 2.000,00 m chega-se ao marco JL-19, deste com azimute de 277º00'00" e distância de 600,00 m chega-se ao marco JL-20, deste com azimute 250°00'00" e distância de 600,00 m chega-se ao marco JL-21, deste com azimute de 250°30'00" e distância de 600,00 m chega-se ao marco JL-22, deste com azimute de 272°00'00" e distância de 1.600,00 m chega-se ao marco JL-23, deste com azimute de 260°00'00" e distância de 600,00 m chega-se ao JL-24, deste com azimute de 268°00'00" e distância de 1.790,00 m chega-se ao marco JL-25, deste com azimute 256º00'00" e distância de 590,00 m chega-se ao marco JL-26, deste com azimute de 230º30'00" e distância de 10.320,00 m chega-se ao marco JL-27, deste com azimute 253°30'00" e distância de 11.425,00 m chega-se ao marco JL-28, deste com azimute de 16º30'00" e distância de 9.000,00 m chega-se ao marco JL-29, deste com azimute 255º30'00" e distância de 100,00 m chega-se ao marco JL-30, deste com azimute 309º30'D0" e distância de 175,00 m chega-se ao marco JL-31, deste com azimute de 45°30'00" e distância de 1.550,00 m chega-se ao marco JL-32, deste com azimute de 7º00'00" e distância de 1.500,00 m chega-se ao marco JL-33, deste com azimute de 36º55'20" e distância de 1.231,00 m chega-se ao marco JL-34, localizado na margem direita do braço do Igarapé Jacaré, afluente do rio Mapuá, deste descendo pela referida margem num percurso de 4.857,00 m até chegar ao marco JL-01 com a mesma localização, deste com azimute 42º00'00" e distância de 2.590,00 m chega-se ao marco JL-02, deste

com azimute $30^{9}00'00''$ e distância de 1.000,00 m chega-se ao marco JL-03, deste com azimute de $80^{9}00'00''$ e distância de 820,00 m chega-se ao marco JL-04, deste com azimute de $342^{9}30'00''$ e distância de 600,00 m chega-se ao marco JL-05, deste com azimute de $93^{9}00'00''$ e distância de 400,00 m chega-se ao marco JL-06, deste com azimute $37^{9}00'00''$ e distância de 500,00 m chega-se ao marco JL-07, deste com azimute 456''00''00'' e distância de 3.300,00 m chega-se ao marco JL-08, deste com azimute de $342^{9}00'00''$ e distância de 1.390,00 m chega-se ao marco JL-09, deste com azimute de $342^{9}00'00''$ e distância de 1.390,00 m chega-se ao marco JL-10, deste com azimute de $20^{9}00'00''$ e distância de 1.390,00 m chega-se ao marco JL-10, deste com azimute de $20^{9}00'00''$ e distância de 1.390,00 m chega-se ao marco JL-10, deste com azimute 104''''' = distância de <math>1.600,00 m, chega-se ao marco JL-11, deste com azimute 31''' = 00'' = 0'' = 1.250,00 m chega-se ao marco JL-12, deste com azimute de 345''' = 00'' = 0'' = 1.250,00 m chega-se ao marco JL-13, deste com azimute de 90''' = 0'' = 0'' = 1.250,00 m chega-se ao marco JL-14, deste com azimute de 90'' = 0'' = 0'' = 1.250,00 m chega-se ao marco JL-15, deste com azimute de 90'' = 0'' = 0'' = 1.250,00 m chega-se ao marco JL-14, deste com azimute de 90'' = 0'' = 0'' = 0'' = 1.000,00 m chega-se ao marco JL-15, deste com azimute de 90'' = 0'' =

CONFRONTAÇÕES

NORTE: Terras a Quem de Direito LESTE: Terras a Quem de Direito SUL: Terras a Quem de Direito OESTE: Terras a Quem de Direito

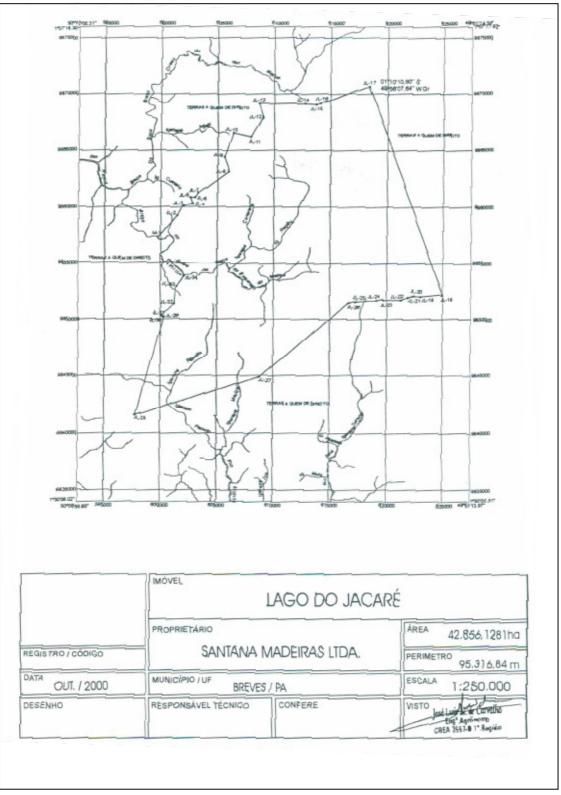


Figure 46. Specifications of Fazenda Lago do Jacaré property (part. 3)

ANNEX III – ARTICLES OF INCORPORATION OF ECOMAPUÁ CONSERVAÇÃO LTDA.

	INSTRUMENTO PARTICULAR DE ALTERAÇÃO DE CONTRATO SOCIAL SANTANA MADEIRAS LTDA. CNPJ Nº 05.086.970/0001-75
Pelo p	presente instrumento particular de alteração de contrato social, os abaixo assinados:
d	HAN LAP TAK, chinês, casado, comerciante, portador da cédula de identidade de estrangeiro RNE n /-068507-4 SE/DPMAF/DPF e devidamente inscrito no CPF/M.F. sob o n.º 113.201.238-48, residente omiciliado em São Paulo, Capital, na Rua Adalivia de Toledo, n.º 310 = apto. n.º 74, Bairro Morumb EP 05683-000;
se sc E ge de C	90 COMUNICAÇÕES LTDA. sociedade organizada e existente de acordo com as leis do Brasil, con ede na Rua Wellcome, n.º 320, sala 12, na Cidade de Cotia, Estado de São Paulo, inscrita no CNPJ/MI ob o n.º 03.557.460/0001-03 e com seus atos constitutivos devidamente arquivados na Junta Comercial di stado de São Paulo sob o n.º NIRE 35216047730 em 30/11/1999, neste ato representada por seus sócio prentes, Sr. Chan Lap Tak, acima qualificado e Sra. BIANCA YUMI TOMITA, casada, administradore empresas, portadora da cédula de identidade RG n.º 9.705.213 SSP/SP e devidamente inscrita no PF/M.F. sob o n.º 256.659.078-80, residente e domiciliado em São Paulo, Capital, na Rua Adalívia de oledo, n.º 310 – apto, n.º 74, Bairro Morumbi, CEP 05683-000;
atos co	s sócios quotistas da sociedade por quotas de responsabilidade limitada denominada SANTANA EIRAS LTDA., com sede social na Cidade de Belém, Estado do Pará, na Avenida Gentil Bittencourt, n. Leja D 1, Dairro Nazaré, CEF 66040-000, Inscitta no C.N.P.J. 500 0 N.º 05.086.9/0/0001-75 e com seus onstitutivos devidamente arquivados na Junta Comercial do Estado do Pará, sob NIRE 152.0052545.2 ssão de 08/07/1993 e último documento arquivado sob o número 20000015089 em 18 de Outubro de resolvem de comum acordo alterar seu contrato social como segue:
ARTI	GO 1° =
com se Belém, Parágra	edade girará sob a denominação social de: "ECOMAPUÁ CONSERVAÇÃO LTDA." ede à Avenida Gentil Bittencourt, n.º 1.390, Loja B-4, Bairro Nazaré, CEP 66040-000, na Cidade de Estado do Pará. afo Único – A sociedade poderá, a critério dos sócios, abrir e extinguir filiais, depósitos e escritórios de bem como transferir sua sede social, em qualquer parte do território nacional.
ARTIC	GO 2* -
	dade terá por objetivos:
I.	Preservação de florestas;
П.	Florestamento e reflorestamento;
III.	Pesquisas e desenvolvimento de produtos primitivos das florestas de sistemas agroflorestais (SAFs):
IV. V.	congeninal la horestal e de eco-sistemas:
	Elaboração de projetos de desenvolvimento sustentável, mecanismos para desenvolvimento limpo, seqüestro de carbono.
VI.	Projetos e estudos de viabilidade econômica-financeira a ser criada e executada que envolvam:
i)	extração de produtos florestais;
ii)	extração, comercialização, troca de mercadorias, industrialização, importação e exportação de
	polpas de frutas e demais produtos alimenticios e bebidas, resinas, óleos, produtos para hisiaras
	Dessoal e eticos, moveis e utensilios para casa:
iii)	pessoal e éticos, móveis e utensílios para casa; serviços de turismo e eco-turismo, inclusive alojamento para viajantes:
iv)	serviços de turismo e eco-turismo, inclusive alojamento para viajantes; realização de trabalhos comunitários ligados a educação, higiene, saúde e outros serviços sociais;
	pessoar e eticos, moveis e utensilios para casa; serviços de turismo e eco-turismo, inclusive alojamento para viajantes; realização de trabalhos comunitários ligados a educação, higiene, saúde e outros serviços sociais; geração de energia com biornassa;
iv)	serviços de turismo e eco-turismo, inclusive alojamento para viajantes; realização de trabalhos comunitários ligados a educação, higiene, saúde e outros serviços sociais; geração de energia com biornassa;
iv)	serviços de turismo e eco-turismo, inclusive alojamento para viajantes; realização de trabalhos comunitários ligados a educação, higiene, saúde e outros serviços sociais;

Figure 47. Amended articles of incorporation from Santana Madeiras Ltda. to Ecomapuá Conservação Ltda.

VCS VERIFIED CARB®N STANDARD

ANNEX IV – DEFINITION OF PROJECT AREA

The project area is the areas under the control of the project proponent where the project activities will be undertaken. The project area must contain only areas qualifying as forest 10 years prior to project start date, as defined in the VCS VM0015 Methodology v1.1. The areas of the present project fall into the following five properties: Bom Jesus, Brasileiro, Lago do Jacaré, São Domingos and Vila Amélia, belonging to the company Ecomapuá Ltda. The definition of the project area and its boundaries was carried out through the following steps:

1- Vectorization of the project boundaries

The project area borders used in the Ecomapuá Amazon REDD Project were extracted from technical appraisals (Portuguese: Laudos) registered at an official notary and at INCRA²¹³. The appraisals include topographic plans, descriptive notes and definition of the perimeter coordinates of the properties. Table 70 below describes the sources of information used to correct the property boundaries, as described in the following sections.

	Source of information	Original projection	Conversion
Hydrography	Hydrography was extracted from the automatic classification and corrected through interpretation of images by Agência Verde employees	WGS84 Z22S	LatLong SAD 69
	Technical appraisal of the Fazenda Lago do Jacaré property, Breves/PA 2005	LatLong SAD 69	WGS84 Z22S
	Technical appraisal of the Fazenda Brasileiro property, Breves/PA 2004	LatLong SAD 69	WGS84 Z22S
Properties	Technical appraisal of the Fazenda Vila Amélia property, Breves/PA 2000	LatLong SAD 69	WGS84 Z22S
L.	Technical appraisal of the Fazenda São Domingos property, Breves/PA 2002	LatLong SAD 69	WGS84 Z22S
	Technical appraisal of the Fazenda Bom Jesus property, Breves/PA 2000	LatLong SAD 69	WGS84 Z22S

Table 70 - Sources of information

2- Standardization of geographical coordinates, azimuths and distances.

a. Editing polygons through azimuths

The polygons were edited through geographical information software ArcGIS, specifically using the editing tool COGO. In order to do this, a polygon *shape* was created in ArcCatalog with the system of geographic coordinates, *Datum* SAD-69. The latter *shape* was imported into ArcMap. The target was defined in the polygon of the property being corrected using the editor function and the angular units function (under *option >Units> Angular Units> Direction Types: North Azimuth e Direction Units: Degrees Minutes Seconds*). The coordinate M1 was defined as the starting point and then the COGO> *Traverse* tool was activated, into which azimuths and

²¹³ Instituto Nacional de Colonização e Reforma Agrária (INCRA): <u>http://www.incra.gov.br/</u> v3.0

distances were imported. During this initial process the points corresponding to hydrography were not adjusted.

b. Editing of polygons using geographical coordinates

The editing of polygons through geographical coordinates was carried out in ArcGIS geographical information software using the *editor* tool. For this purpose, a shape of points was created where geographical coordinates (latitude and longitude) had been inserted, in *Degrees Minutes Seconds*. Once the geographical reference points were defined by the coordinates, ArcCatalog was used – specifically the *Create New Feature* editing tool with the *Snapping* feature switched on – to make a new polygon shape from which coordinates comprising the property boundaries were selected.

c. Azimuths VS Geographical coordinates

Figure 48 demonstrates the difference between the two methods: editing polygons and use of geographical coordinates. The geographical coordinates were defined as the best method for correcting property boundaries. This is because the latitudes and longitudes are unique within the hemisphere, while azimuths can be influenced by other factors, which can affect their accuracy.

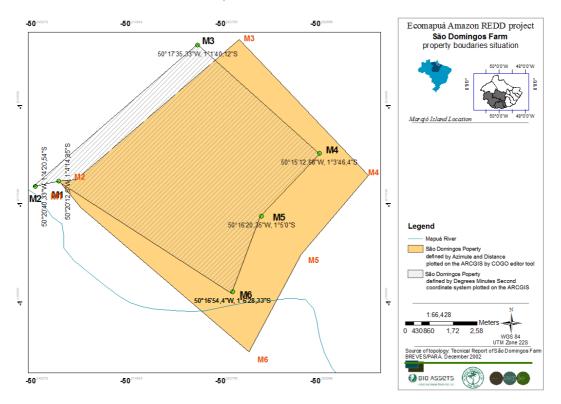


Figure 48. Map of the issues involving property boundaries of Ecomapuá Ltda. properties

d. Adjustment of coordinates relating to rivers

All perimeters of bodies of water were corrected in their entirety using the hydrography extracted from the automatic classification and the interpretation carried out by Agência Verde through the 1:10,000 mapping window and the final scale of 1:15,000. The geographic coordinates coinciding with bodies of water (*i.e.* Fazenda Bom Jesus and Fazenda Vila Amélia) were edited using the *editor>Cut Polygon Feature* function. Because the descriptive notes in the appraisals specified that property limits corresponded to rivers, in cases

where properties boundaries did not fall in the proximity of riverbanks (e.g. São Domingos, Lago do Jacaré and Brasileiro properties), the coordinate M1 was moved to the riverbanks in order to then apply the function: *editor>Cut Polygon Feature.*

e. Allowable error and results

Table 71 illustrates the difference in area between the appraisals and the areas used in the present project. The error was deemed allowable since there were errors in the values of the azimuths and possibly in the geographic coordinates, furthermore the appraisal did not define either the projection for definition of the project boundaries, or the measuring method.

PROPERTY		AGÊNCIA VERDE		APPRAISAL		DIFFERENCE	
Property	Municipality	Area	Perimeter	Area	Perimeter	Area	Perimeter
Bom Jesus	Breves, PA	14,469.01	64,979.96	14,529.73	64,352.65	-60.71	627.31
Brasileiro	Breves, PA	4,281.68	32,395.81	3,524.00	16,934.50	757.68	15,461.31
Lago Jacaré	Breves, PA	58,617.44	124,189.20	42,856.12	95,316.84	15,761.31	28,872.35
	Curralinho, PA						
	São Sebastião da Boa Vista, PA						
São Domingos	Breves, PA	4,796.83	29,532.65	5,386.45	30,729.11	-589.61	-1,196.46
Vila Amélia	Breves, PA	16,303.64	67,701.32	15,999.01	64,291.75	304.63	3,409.57

Table 71 – Differences in perimeter and area values encountered in the official appraisals and corrected values from Agência Verde

Following the steps described above, the properties were plotted on a map, the properties sum to 98,421.46ha and the project area comes to 86,269.84ha (Figure 49). Thus, the deforested areas inside all the properties, including those deforested within 10 years prior to project start date, sum to 12,151.63ha.

The properties are located in the municipalities of Breves, Curralinho and São Sebastião da Boa Vista. Table 72 shows the percentages of properties in each of the municipalities concerned.

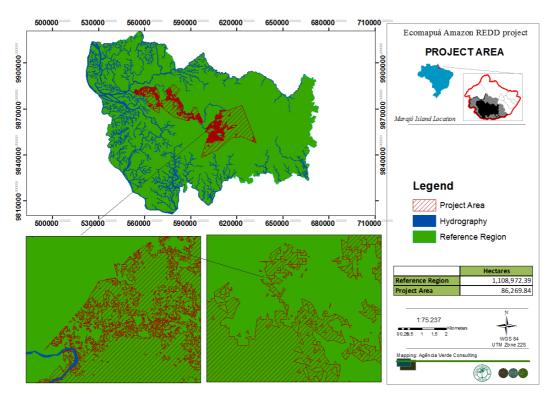


Figure 49. Project area

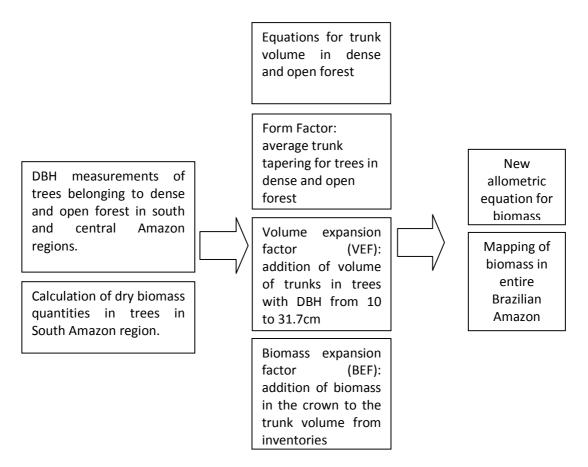

Municipality	Property	%
	Bom Jesus	100
	Brasileiro	100
Breves	São Domingos	100
	Vila Amélia	100
		30
Curralinho	Lago do Jacaré	29
São Sebastião da Boa Vista		41

Table 72 – Percentages of properties in each municipality

VCS VERIFIED CARB®N STANDARD

ANNEX V – DEFINITION OF CARBON STOCKS

Carbon stock changes in the present project were calculated taking into account the carbon stocks of the defined forest type in the project area – namely Riparian Dense Tropical Rainforest (Portuguese: Floresta Ombrófila Densa Aluvial) – which would be released into the atmosphere through deforestation predicted in the baseline scenario. The carbon stocks were calculated using the average biomass figures for riparian dense tropical rainforest specified by Nogueira (2008)²¹⁴. This study was selected because, following a thorough literature search, the biomass values were deemed to be most accurate for the vegetation cover of the project's reference region. The author combined two main methods for estimation of biomass in Amazon rainforest: allometric equations and wood volumes from inventories. The study therefore involved data collected from two Amazon regions: South and Central, corresponding to open and dense forest types. Nogueira (2008) used these data to adjust certain factors (form factor, volume expansion factor and biomass expansion factor) and thus propose a new equation for biomass calculation, which was used to calculate the average biomass/ha of the entire Brazilian Amazon. The procedure was as depicted in the following diagram:

In the study, the values referring to average biomass per ha in a given vegetation type did not have corresponding standard deviations because they are estimates and not direct measurements. The author calculated the standard deviation for the average DBH and dry matter values which were the basis the adjustment to the factors mentioned above and the development of the new biomass calculation formula. The latter was used to calculate and develop a biomass map of the entire Brazilian Amazon. According to Nogueira

²¹⁴ Nogueira, E.M. (2008), "Densidade da Madeira e Alometria de Arvores em Florestas do Arco do Desmatamento: Implicações para Biomassa e Emissão de Carbono a Partir de Mudanças no Uso da Terra na Amazônia Brasileira." 151 p, INPA, Manaus.

(2008), the average above and below-ground biomass value for riparian dense tropical rainforest is 360.8 Mg/ha (Table 73). In order to convert biomass to carbon and carbon to CO_2 , IPCC (2003)²¹⁵ values were used (Table 74 and Table 75)

Vegetation	Above ground biomass (ab) Mg ha ⁻¹	Below ground biomass (bb) Mg ha ⁻¹	Total biomass Mg ha ⁻¹
Riparian Dense Tropical Rainforest	299.3	61.5	360.8

Table 73. Average biomass for riparian dense tropical rainforest

Conversion Factors			
Biomass to Carbon	0.5		
Carbon (C) to CO ₂	3.666666667		

Table 74. Conversion factors

Name	Riparian Dense Tropical Rainforest			
IDcl	1			
Average carbon stock per hectare ± 90% Cl				
Cab <i>icl</i>	Cbbicl Ctoticl			
C stock	C stock	C stock		
tCO₂e ha⁻¹	tCO₂e ha⁻¹	tCO₂e ha⁻¹		
548.72	112.75	661.47		

Table 75. Average carbon stock values for riparian dense tropical rainforest

²¹⁵IPCC, 2003. Good practice guidance for land use, land-use change and forestry. Kanagawa: IGES, 2003. Available at: http://www.ipcc-nggip.iges.or.jp/public/gpglulucf/gpglulucf.html